fem – forschungsinstitut edelmetalle & metallchemie

27. Osnabrücker Umweltgespräch, 24.-25.06.2008

Vorstellung des DBU-Projektes

"Galvanische Eisen-Abscheidung aus ionischen Flüssigkeiten"

Laufzeit: 01.10.2006 bis 31.01.2008

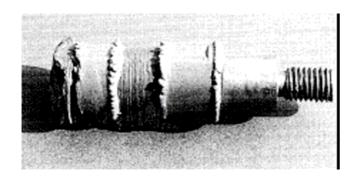
Reinhard Böck

Inhalt des Vortrages

- 1. Projektteilnehmer
- 2. Motivation der Eisenabscheidung aus RTIL's
- 3. Arbeitsprogramm
- 4. Fe-Abscheidung aus RTIL's
- 5. Charakterisierung der hergestellten Eisenüberzüge
- 6. Fazit und Ausblick

Projektpartner

- 1) Forschungsinstitut Edelmetalle & Metallchemie (fem), Schwäbisch Gmünd
- 2) Fraunhofer Institut Chemische Technologie (ICT), Pfinztal
- 3) Ionic Liquids Technologies GmbH & Co KG (Iolitec), Denzlingen
- 4) International Plating Technologies GmbH (IPT), Stuttgart


Ausgangssituation (wässrige Elektrolytsysteme)

- Stabilität der Elektrolyte (überwiegend Fe²+-Elektrolyte)
 - → Problem der Fe²⁺ Oxidation zu Fe³⁺ (*Stromausbeute*)
 - \rightarrow max . $c_{Fe3+} = 0.1 3 g/I$
- pH-Wert muss niedrig gehalten werden
 - \rightarrow oberhalb pH = 5 \rightarrow Ausfällung von Fe(OH)₂
 - \rightarrow Hydrolyseprodukte \rightarrow u. U. Hydroxydeinlagerungen
 - → Härte steigt, ergibt aber auch sprödere Schichten
- aus Fe³⁺ Elektrolyten ist es schwierig technisch brauchbare
 Schichten abzuscheiden
- Wasserstoffmitabscheidung → Gefahr einer Wasserstoffversprödung

Ausgangssituation (wässrige Elektrolytsysteme)

- nur geringer technischer Einsatz der Eisenelektrolyte
- u. a. als Zwischenschicht auf Gusseisen vor Feuerverzinken
- verstärkter Einsatz war hauptsächlich in Ländern des ehemaligen Ostblocks
- Eisenelektrolyte wurden hier u. a. zum Aufarbeiten von Werkzeugen, Maschinenteilen oder für Galvanoformung verwendet

TU Chemnitz -Bolzen einer landwirtschaftlichen Maschine vor der Nachbearbeitung

Aus: Zesch, et. al.; Galvanotechnik (10) 87 (1996), S. 3236

Motivation

- Erstmalige Machbarkeitsstude zur Fe-Abscheidung aus RTIL's
- Ersatz von umweltbedenklichen Chrom-, Nickel- oder Kobalt- Schichten durch unbedenkliches Eisen
- aprotische Eisenabscheidung
 - keine Wasserstoffmitabscheidung bzw. nur eingeschränkt
- andere Solvatisierung / Komplexierung der Eisen-lonen als in wässrigen Systemen
 - andere Oberflächenmorphologie, Schichteigenschaften

Arbeitsprogramm

Arbeits- schritte:	Beschreibung	Partner
1	Matrixerstellung, Verständigung über Rahmenbedingungen (in Anlehnung an übliche Prozessparameter in der Galvanotechnik, Abschätzung der Wirtschaftlichkeit)	FEM IOLITEC ICT und IPT
2	2 Screening der Metallsalze und Matrices (Löslichkeit), Herstellung der Elektrolyte; Ermittlung der Viskosität und der Leitfähigkeit ausgewählter Elektrolyte	
3	Überprüfung literaturbekannter Arbeiten	ICT
4	Screening der Abscheidbarkeit von Eisen; Erste Darstellung von Eisen-Schichten	FEM, ICT
5	Optimierung der Abscheidung unter den Aspekten funktionaler Schichten und Elektrolytstabilität, Festlegung der optimalen Prozessparameter (Stromdichte, Temperatur, Metallgehalt etc.)	
6	Materialcharakterisierung (Struktur, Abscheideraten, maximale Schichtdicke, Korrosionsuntersuchung etc.)	FEM

Ausgewählte RTIL's für die Fe-Abscheidung

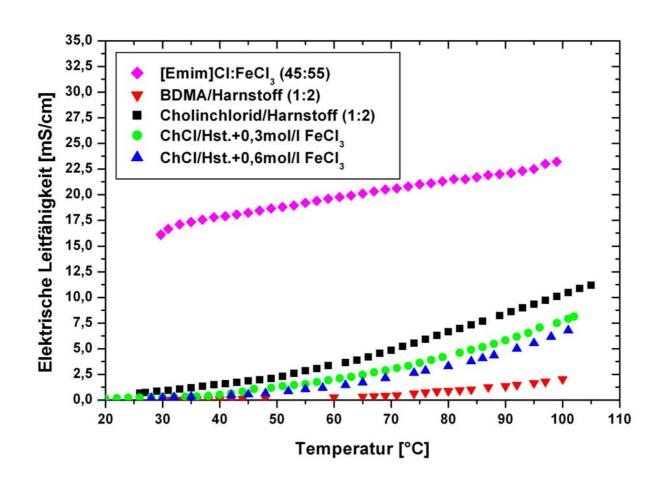
Elektrolyt	Mischungsverhältnis Lewis Azidität / Basizität
EmimCI – Fe (II)CI ₂ ,	Lewis basisch
BmimCl – Fe (III)Cl ₃	(N=0,5:0,5); neutral - Lewis sauer
Bmim BF ₄ CI – Fe (II)CI ₂	Lewis basisch
Bmim BF ₄ CI – Fe (III)hexacyanoferrat(II)	Lewis basisch
HmimCl – Fe (III)Cl ₃	(N=0,45:0,55 / 0,4:0,6), Lewis sauer
BDMA/Harnstoff (1:2) – Fe (III)CI ₃	Lewis basisch
Cholinchlorid / Harnstoff (1:2) – Fe (II)Cl ₂	Lewis basisch
Cholinchlorid / Harnstoff (1:2) – Fe (III)Cl ₃	

Ausgewählte Elektrolyte

$$CH_3$$
 N^{+}
 Cr
 $+$ FeCl₃
 $(CH_2)_5CH_3$

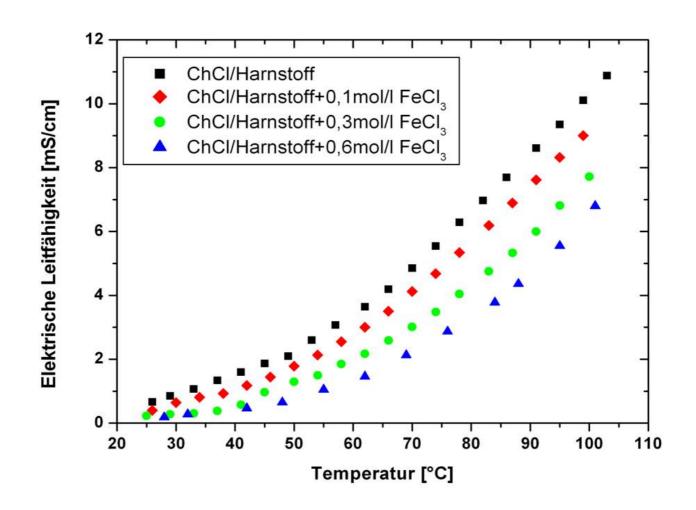
Cholinchlorid - Harnstoff - FeCl₃

$$\begin{bmatrix} c_{H_3} \\ H_3C - N - CH_2 - CH_2 - OH \\ CH_3 \end{bmatrix} CI^{-} + \underbrace{ H_2N } CNH_2 + FeCl_3$$


Parameter der elektrochemischen Eisenabscheidung

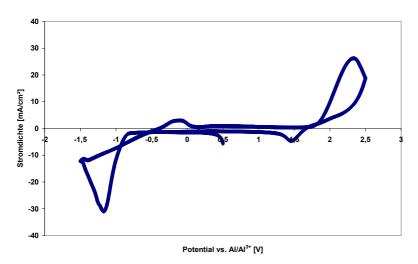
Elektrolyt	Substrat	Anode	Temperatur [°C]	Stromdichte [mA/cm²]
HmimCl – FeCl ₃ (N=0,45:0,55)	Cu-Stab	Fe	50°C	0,5 – 10 - galvanostatisch - Pulsstrom
ChCI-Harnstoff- - FeCl ₃ - FeCl ₂	Cu-Stab Cu-Blech Ms-Blech	Fe GC	100°C	2,5 – 10 - galvanostatisch - Pulsstrom

Die Versuche zur Metallabscheidung erfolgten jeweils unter normaler Luftatmosphäre.

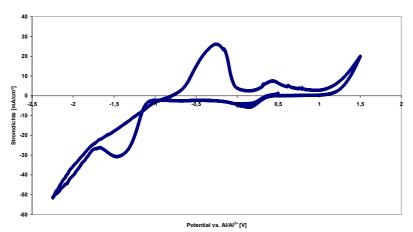


Temperaturabhängigkeit der Leitfähigkeit

Temperaturabhängigkeit der Leitfähigkeit


Temperaturabhängigkeit der Viskosität

Elektrochemische Charakterisierung

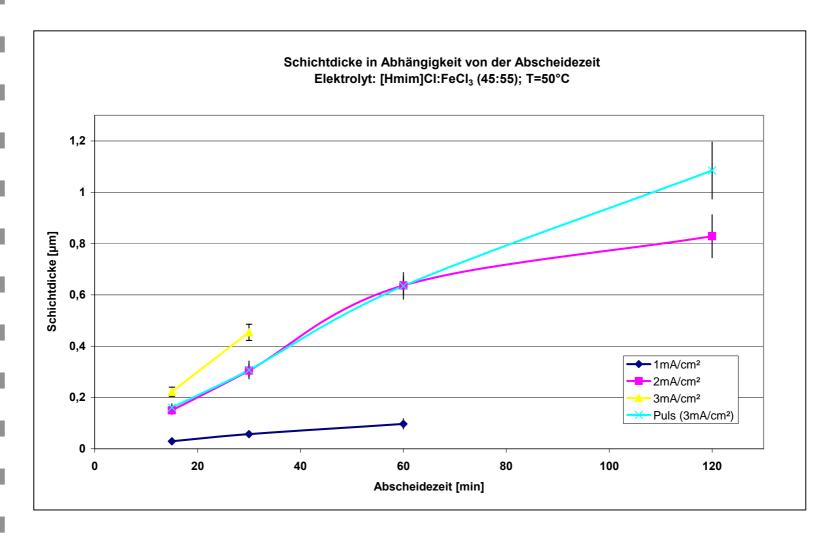

Aufgezeichnetes CV von HmimCl - FeCl3 (N=0,45:0,55); Scanrate: 100 mV/s; Elektrolyttemperatur: 50°C; Arbeitselektrode: Glaskohlenstoff; Al-Referenzelektrode (AlCl3 - BmimCl mit N=0,6:0,4);

Fe-Reduktionspeak E_{Pc} = - 1,22 V,

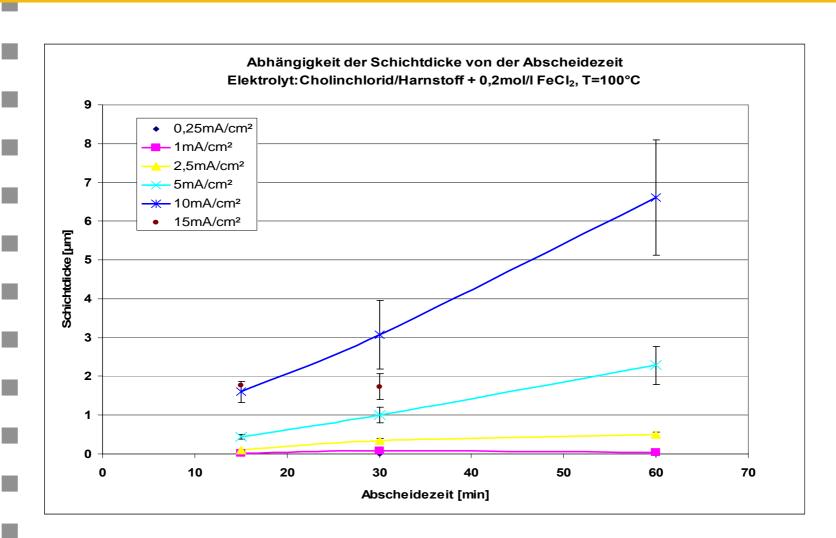
Fe-Auflösepeak (Fe \rightarrow Fe²⁺) E_{Pa} = - 0,11 V;

Peaktrennung (△E_P): 1,11 V

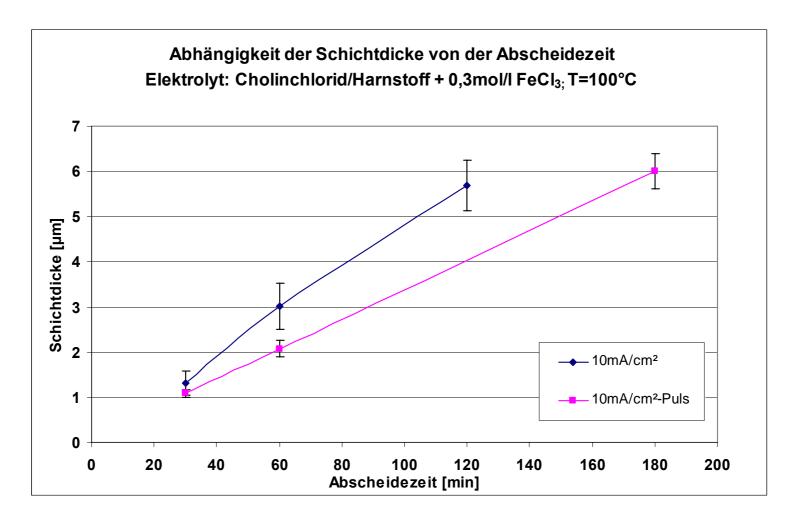
Cyklovoltamogramm-Cholinchlorid/Harnstoff-FeCl₃; T=100°C

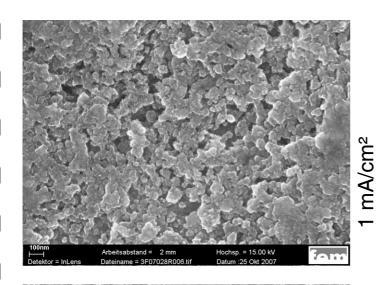

Aufgezeichnetes CV von ChCl - Harnstoff - FeCl3 (0,6 mol/l FeCl3); Scanrate: 100 mV/s; Elektrolyttemperatur: 50°C; Arbeitselektrode: GC; Al-Referenzelektrode (AlCl3 - BmimCl mit N= 0,6:0,4);

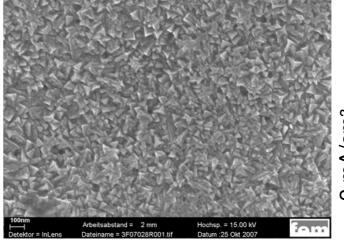
Fe-Reduktionspeak $E_{Pc} = -1,47 \text{ V}$,

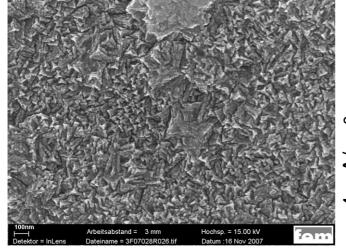

Fe-Auflösepeak (Fe \rightarrow Fe²⁺) E_{Pa} = - 0,25 V;

Peaktrennung (∆E_P): 1,22 V



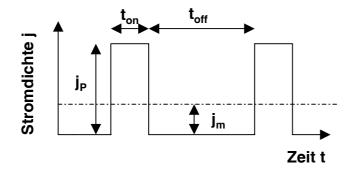






Oberflächenmorphologie: [Hmim]CI - FeCl₃

人では、これでは、これ	2 mA/cm²
S	tromai



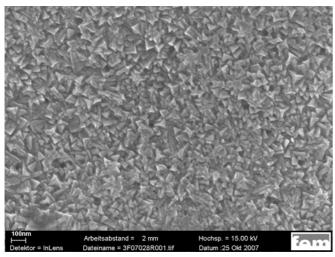
j [mA/cm²]	t [min]	d _s [µm]	Stromausb. [%]
1	30	0,07	16
2	30	0,3	34
4	15	0,4	45

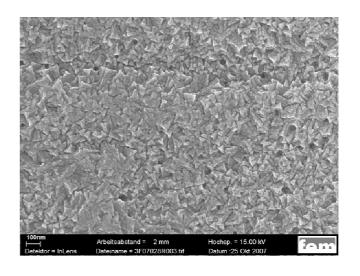
T = 50°C, galvanostatisch

Abscheidung mittels Pulsstrom: [Hmim]CI - FeCl₃

$$j_m = j_P \bullet \frac{t_{on}}{t_{on} + t_{off}}$$

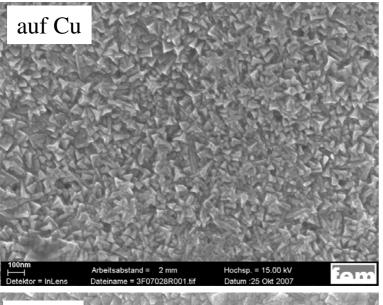
 j_P : Peakstromdichte; j_m : mittlere Stromdichte t_{on} : Zeit fließender Strom; t_{off} : Zeit kein Stromfluß

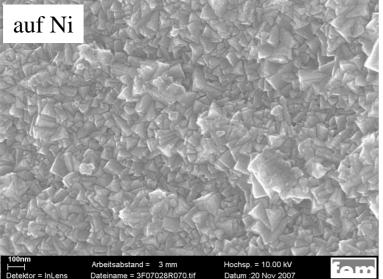

- Bildung neuer Keime

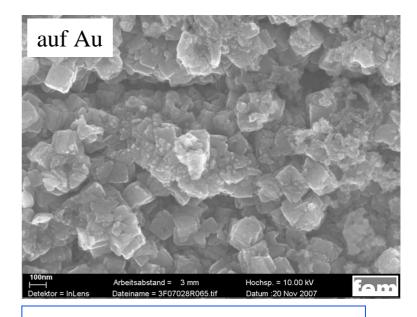

 Kristallwachstum
- Durch geeignete Wahl der Pulsparameter kann die Oberflächenmorphologie der Niederschläge beeinflusst werden
- j_P > j_m sollte zu einer verstärkten Keimbildung führen

Oberflächenmorphologie: [Hmim]CI - FeCl₃

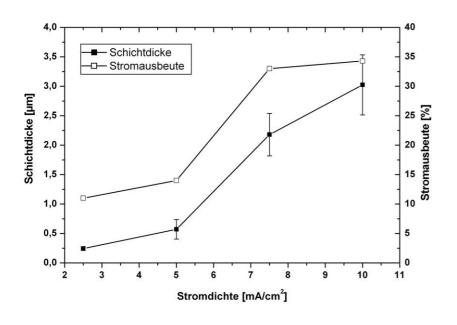
Pulsstrom-Abscheidung:

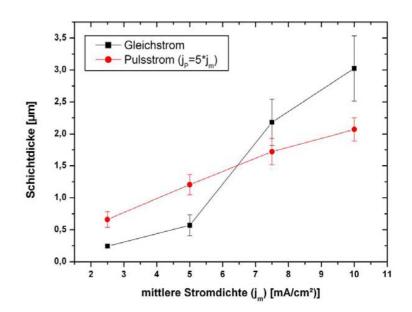

 $J_m=1,3 \text{ mA/cm}^2$; $J_P=2 \text{ mA/cm}^2$;


 t_{on} =2 s; t_{off} = s

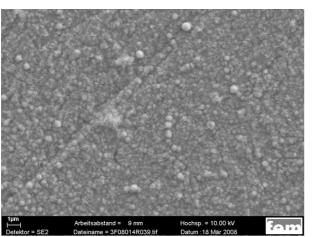

 $t=30 \text{ min}; d_s=0,3 \mu\text{m}$

Substrateinfluss: [Hmim]CI - FeCl₃

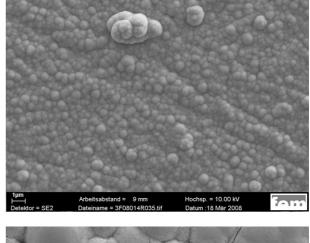


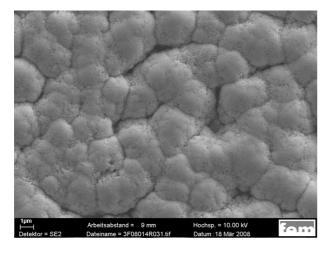


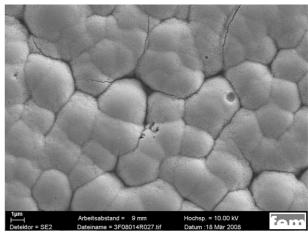
- REM-Aufnahme: x 50.000
- $J = 2 \text{ mA/cm}^2$; $T=50^{\circ}\text{C}$; t=30 min
- Substratmaterial hat Einfluss auf die Schichtmorphologie
- auf Au bevorzugt größere Kristallite



t=60min, T=100°C, 0,3 mol/l FeCl₃

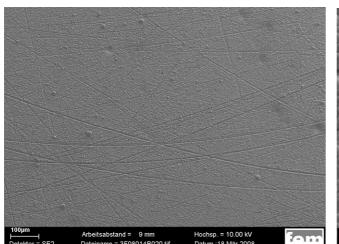


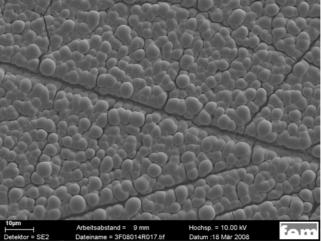

Oberflächenmorphologie: ChCl - Urea - FeCl₃


2,5 mA/cm²

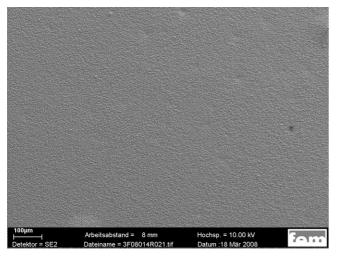
5m A/cm²

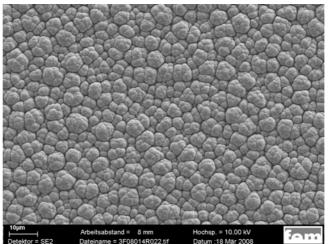
7,5 mA/cm²




10 mA/cm²

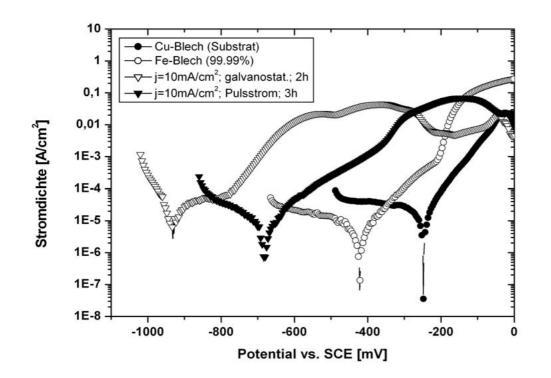
T=100°C, t=60 min, Kupfer-Substrat, galvanostatisch, ohne Rührung


Vergleich: Gleichstrom – Pulsstrom (ChCl - Urea - FeCl₃)



Gleichstrom:

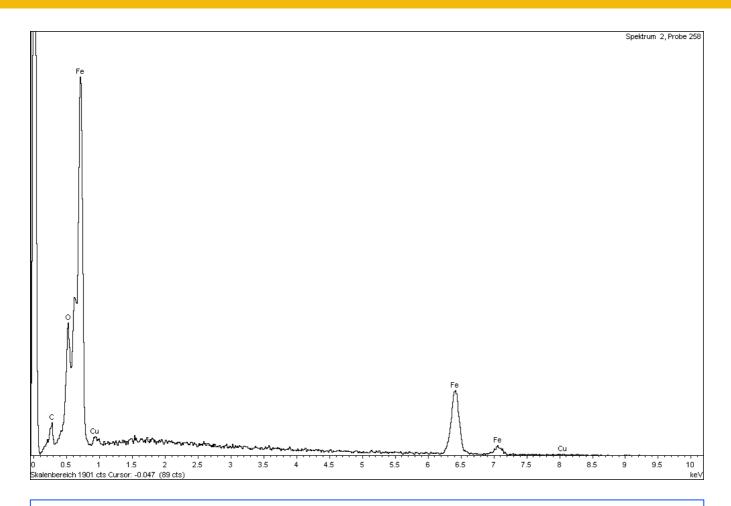
 $J_{(m)}$ =10 mA/cm² d_s =6 μ m T=100°C



Pulsstrom:

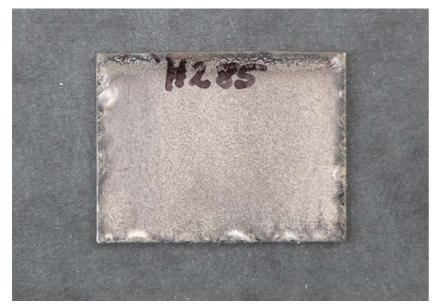
 j_{m} =10 mA/cm² j_{p} =50 mA/cm² t_{on} =0,1 s / t_{off} =0,4 s d_{s} =6 μ m T=100°C

Korrosionsmessungen an ausgewählten Proben



- Proben zeigten nach
 6 Monaten an Luft im
 Labor häufig überhaupt keine Roststellen!
- Elektrochemische Korrosionsmessungen in 0,8M NaCl Lsg. (pH = 6,5)

Probe / Parameter	OCP [mV vs SCE]	E _{corr} [mV vs SCE]	/ _{corr} [μΑ]	J _{corr} [μΑ/cm²]
Cu - Substrat	- 238	- 248	7,06	25,22
Fe - Referenzmaterial	- 415	- 421	2,12	7,56
Fe - mit konst. Gleichstrom	- 814	- 935	7,50	26,79
Fe - mit Pulsstrom	- 609	- 682	3,11	11,10


Korrosionsmessungen an ausgewählten Proben

REM-EDX-Analysenspektrum: Eisenprobe (ChCl - Urea - FeCl3), die in den Korrosionsmessungen untersucht wurde; J=10 mA/cm², galvanostatisch, T=100°C, t=120 min, s_d =3 μ m

Beispiele für hergestellte Eisenüberzüge

Links: Gleichstrom, J=17,5 mA/cm², T=100°C, t=30 min, s_d =4,5 μ m

Rechts: Pulsstrom, $J_m = 10 \text{ mA/cm}^2$, $J_{Puls} = 50 \text{ mA/cm}^2$, $t_{on} = 0.1 \text{ s}$, $t_{off} = 0.4 \text{ s}$,

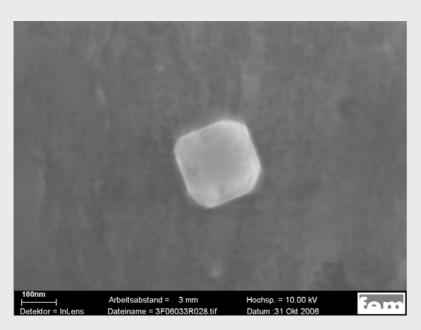
T=100°C, Abscheidezeit t=60 min, s_d =2 μm

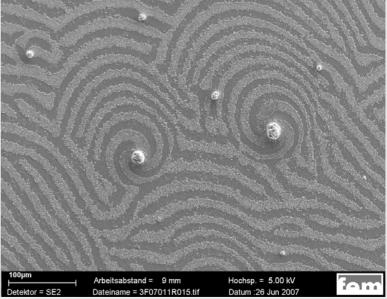
Zusammenfassung

- Aus "ionischen Flüssigkeiten" konnten erstmals dichte und kompakte Eisenschichten (s_d = mehrere μm) auf "realen" Substraten abgeschieden werden.
- Der Elektrolyttyp hat einen deutlichen Einfluss auf die Art und Qualität der erzeugten Eisenüberzüge.
- Die Fe-Abscheideraten aus den untersuchten Elektrolyten sind merklich geringer im Vergleich zu wässrigen Fe-Elektrolyten. Es können allerdings Eisenschichten aus Fe³⁺-Elektrolyten abgeschieden werden.
- Durch Pulse-Plating konnte die Oberflächenmorphologie, die Stromausbeute und der Einbau von Fremdelementen beeinflusst werden.
- Es konnten sehr korrosionsbeständige und feinkristalline (Rein-) Eisenschichten hergestellt werden, die z.B. als Barriereschichten oder in ferromagnetischen Schichtsystemen Verwendung finden könnten.

Ausblick

- Weiterführende Untersuchungen wären wünschenswert, um den
 - → eigentlichen Eisen-Abscheidemechanismus zu klären
 - → eine weitergehende Schichtcharakterisierung (Härte, Verschleiß etc.), um mögliche Einsatzgebiete besser beurteilen zu können
 - → die Rolle des "gebundenen" Wassers im System ChCl Urea FeCl₃ zuordnen zu können
 - → Einfluss der Temperatur bei der Metallabscheidung aus dem System ChCl Urea FeCl₃ weitergehender zu überprüfen
 - → Einfluss der Hydrodynamik auf die Metallabscheidung zu ermitteln


Danksagung


- DBU (Deutsche Bundesstiftung Umwelt) für die finanzielle Unterstützung des Vorhabens
- Herr Wulf, Herr Pfund, Frau Bretzler und Frau Schöne für ihre tatkräftige Mithilfe (fem)
- Iolitec (Herr Dr. Schubert, Herr Dr. Reisinger)
- ICT (Herr Dr. Tübke)
- IPT (Herr Kurrle)

Vielen Dank für

Ihre Aufmerksamkeit!

