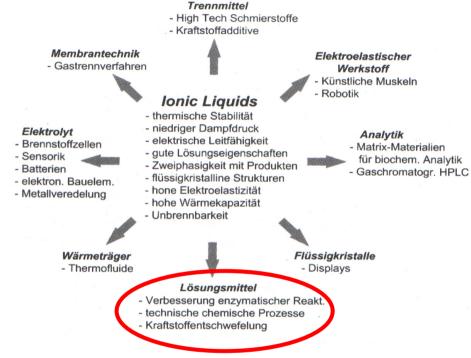


F. Meister¹, C. Ißbrücker², M. Sellin³

- ¹ Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Breitscheidstraße 97, 07407 Rudolstadt
- ² Kompetenzzentrum für Polysaccharidforschung an der Friedrich-Schiller-Universität Jena, Humboldtstraße 11, 07743 Jena
- ³ Friedrich-Schiller-Universität Jena, Institut für Technische Chemie und Umweltchemie, Lessingstraße 12



Motivation:

- ionische Flüssigkeiten werden in der Literatur im Allgemeinen als
 - \Rightarrow inerte,
 - ⇒ emmisionsarme
 - ⇒ schwer entflammbare
 - ⇒ hoch Temperatur stabile und
 - ⇒ über einen weiten Temperaturbereich flüssige

Reaktionsmedien beschrieben.

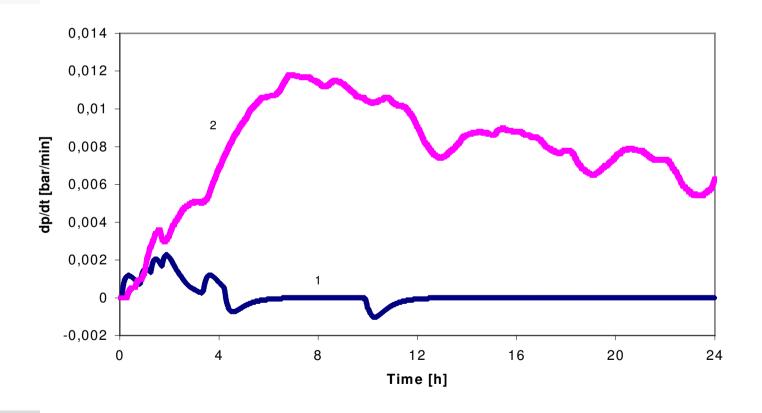
Dies macht sie zu geschätzten Lösungsmitteln für technische Prozesse

Teilaufgaben der Verbundpartner

 Entwicklung eines Laborverfahrens zur Auflösung, physikalische Funktionalisierung und Verformung von Zellstoffen

 Entwicklung von Laborverfahren zur Auflösung, chemischer Modifizierung und Verformung von Cellulosederivaten Entwicklung eines
 Laborverfahrens
 zum Recycling
 von ionischen
 Fluiden

146	
202	
183	
204	
180	
189	
213	
219	
	202 183 204 180 189 213


 $T_{\rm on}$ – onset-Temperatur = die Temperatur, ab der deutliche kalorische Effekte exo- oder endothermer Zersetzungsreaktionen messbar sind

Molares

Isoperibole Langzeitmessungen im Miniautoklav:

Zusammenhang zwischen Temperzeit und Druck von Celluloselösungen gelöst in BMIMCI (1) und in NMMO (2).

Thermische Stabilität von modifizierten Spinnlösungen Bestimmt mittels DSC

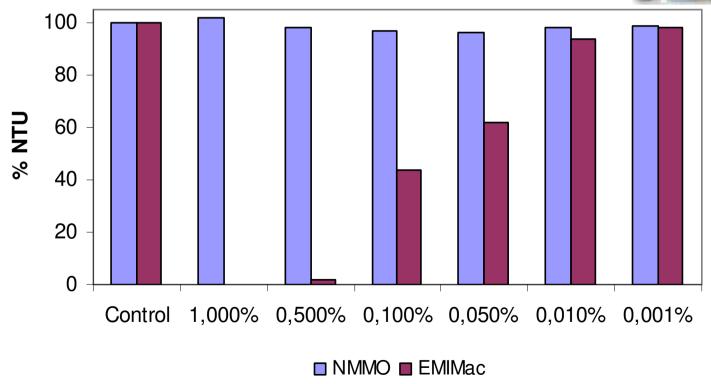
Cellulose- konzentration [%]	Lösung smittel	Additiv	Additivgehalt [%]	T _{on} [°C]
9,0	NMMO	NaOH, GPE	0,04, 0,06	160
9,0	NMMO	Aktivkohle 1	4,5	147
9,0	NMMO	Aktivkohle 4	4,5	131
12,0	BMIMCI	Nanosilber	0.1	200
12,0	BMIMCI	Aktivkohle 4	6	197
18,0	EMIMac	Aktivkohle 4	9	177
23.5	EMIMac	Aktivkohle 4	11.75	176

Charakteristik von modifizierten Spinnlösungen

Versuch		VR 06051	VR06052
Funktionaladditiv, [Gehalt]	%	Nanosilber, [0,1]	A-Kohle, [25]
Feststoffgehalt	%	12,0	13,7
Cuoxam-DP (eingesetzter Zellstoff)		494	494
Cuoxam-DP (in Lösung)		387	n.m.
Nullscherviskosität (85°C)	Pas	5.482	4.432
Scherrate (cross over)	rad/s	3,4	8,0
Speichermodul (cross over)	Pa	3.346	2.413
Plateaumodul	Pa	11.204	8.126
Uneinheitlichkeit (rheologisch)		3,4	4,0
Relaxationszeit λ_m bei H^*_m	S	1,74	2,25
Häufigkeit H_m^* bei λ_m	Pas	571	460
rel. Häufigkeit H* bei λ ~ 85 s	%	67	42

Textil-physikalische Fasereigenschaften von physikalisch modifizierten Cellulosefunktionsfasern aus Lösungen in ionischen Fluiden

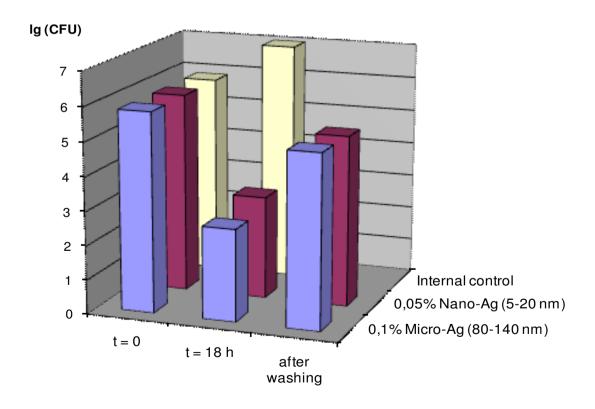
Probe		VR060511	VR060521	VR060522
Funktionaladditiv		Nanosilber	Aktivkohle	Aktivkohle
Faserfeinheit	dtex	1,8	2,18	3,27
Reißfestigkeit trocken	cN/tex	42,3	12,9	12,1
Reißfestigkeit nass	cN/tex	33,8	10,5	9,8
Reißkraftverhältnis	%	79,9	81,4	81,0
Reißdehnung trocken	%	10,6	9,9	12,7
Reißdehnung nass	%	11,1	12,6	14,8
Schlingenreißkraft	cN/tex	22,3	3,6	3,0
Schlingenreißkraftverh.	%	52,7	27,9	24,8
Anfangsmodul	cN/tex	822	389	330
Nassmodul	cN/tex	274	43	33



Nephelometrische Messungen of NMMO and EMIMac

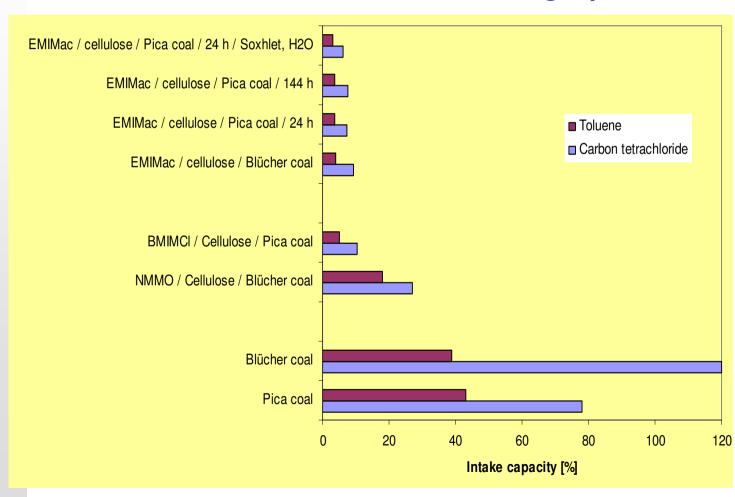
Lösungsmittelverdünnung mit CASO-Bouillon: 0,001% - 1% Microplate nephelometer, Nephelostar Galaxy, BMG, Offenburg NTU: Nephelometric turbidity unit

Staphylokokkus aureus, growth after 12 h



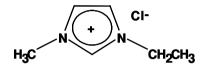
Permanenz der antibakteriellen Aktivität nach 10 Waschzyklen bei 60 ℃

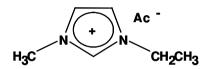
(Japanese Industrial Standard, JIS L 1902:2002)


Testkeim: Klebsiella pneumoniae

Sample	Additive	Solvent	Antibacterial activity Staphylococcus Klebsiella aureus pneumoniae	
VR 06051	0,1% Micro silver (80 – 140 nm)	BMIMCI	Non antibacterial	Non antibacterial
1134	0,1% Micro silver (80 – 140 nm)	EMIMac	Strong antibacterial	Strong antibacterial
1134, after washing	0,1% Micro silver (80 – 140 nm)	EMIMac	Significant antibacterial	Strong antibacterial
1133	0,05% Nano silver (5 – 20 nm)	EMIMac	Strong antibacterial	Strong antibacterial
1133, after washing	0,05% Nano silver (5 – 20 nm)	EMIMac	Slight antibacterial	Strong antibacterial
1258	-	EMIMac	Slight antibacterial	Non antibacterial
1261	-	NMMO	Significant antibacterial	Non antibacterial
Solvent		NMMO	Non antibacterial	Non antibacterial
Solvent		EMIMac	Slight antibacterial	Non antibacterial

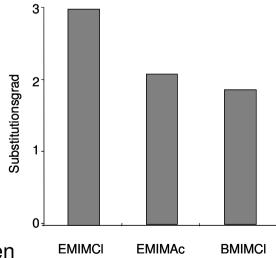
Adsorptionscharakteristik von Aktivkohlen und Aktivkohlefasern aus NMMO bzw. IL's gesponnen




Acetylierung von Cellulose in IL

Synthese von Celluloseactetat mit Acetanhydrid (Labormaßstab)

1-*N*-Butyl-3-methylimidazolium chloride (BMIMCI)



1-N-Ethyl-3-methylimidazolium chloride (EMIMCI)

1-N-Ethyl-3-methylimidazolium acetate (EMIMAc)

- ⇒ Einstellung der DS-Werte über Variation der Reaktionsbedingungen (Zeit, Temperatur, Molverhältnis)
- ⇒ Höhe des Substitutionsgrades auch abhängig von der verwendeten IL
- ⇒ Produkte sind löslich in DMSO und Chloroform (DS>2,94)
- ⇒ Grund sind unterschiedliche Wechselwirkungen zwischen den IL und der verwendeten Cellulose (Avicel)

2h, 80℃, AGU:Acetanhydrid 1:3

Acetylierung von Cellulose in IL

Synthese von Celluloseacetat mit Acetanhydrid für die Direktverspinnung zu Celluloseacetatfasern

- Vergrößerung der Ansatzmenge (40 fach)

 Herstellung von Celluloselösungen unterschiedlicher Konzentration in BMIMCI, EMIMCI, EMIMAc

- Umsetzung für 2h bei 77°C, Fällbad Wasser bei verschiedenen Molverhältnissen

(1:0,25; 1:0,5; 1:5 mol AGU/mol Acetanhydrid)

BMIMCI: Acetatfasern mit einem DS von 2,3 mit einer

Faserfeinheit von 2,43 dtex, Reißfestigkeit

10 cN/tex

Problem: Korrosivität

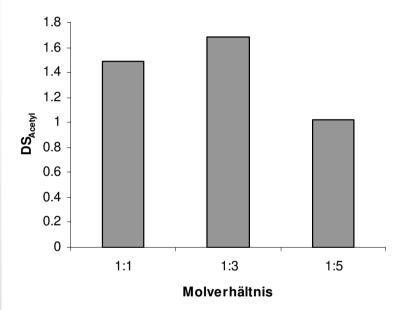
EMIMCI: nicht verspinnbar, Lösung schlecht verzugsfähig

EMIMAc: nicht verspinnbar, Dunkelfärbung der Lösung

Celluloseacetatfasern erhalten durch Direktverspinnung aus BMIMCI

Acetylierung von Cellulose in IL

Acetylierung von Cellulose mit Vinylacetat (Labormaßstab)


- Vorteil: kein saures Nebenprodukt wie bei der Umsetzung mit Acetanhydrid bzw. Acetylchlorid, entstehender Vinylalkohol lagert sich zu Acetaldehyd um
- Experimente mit Avicel in BMIMCI, EMIMAc, EMIMCI, Reaktionszeit 2h, bei 80 ℃ bzw. 90 ℃ (EMIMCI)
- in BMIMCI und EMIMCI konnten keine Celluloseacetate erhalten werden
- in EMIMAc konnten DMSO- und acetonlösliche Celluloseacetate mit einem Substitutionsgrad bis 2,8 synthetisiert werden (IR spektroskopisch nachgewiesen), die jedoch stark verfärbt waren (Verfärbung zu braun/schwarz bereits während Reaktionsverlauf).

Acetylierung von Cellulose mit Vinylacetat (Labormaßstab)

vermeiden

Anderung der Reaktionstemperatur in EMIMAc auf 40°C um Verfärbungen zu

Ebenfalls Verfärbung des Reaktionsgemisches, aber Reaktionsprodukte waren farblos

DS von 1.49 bei einem Molverhältnis von 1.1

→ Hinweis auf Nebenreaktion, Acetation der IL scheint ebenfalls acetylierend zu wirken

Einfluss des als Nebenprodukt entstehenden Acetaldehyds

Umsetzungen bei Raumtemperatur ergaben farblose Celluloseacetate mit einem Substitutionsgrad < 1

Schlussfolgerung: Dieser Syntheseweg ist trotz Nebenreaktionen vielversprechend und Bedarf einer Umsetzung in einem größeren Maßstab.

Synthese von Trimethylsilylcellulose in IL

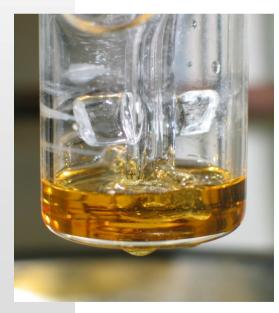
Silylierung resultiert in Erhöhung des lipophilen Verhaltens und der thermischen Stabilität

→ **Ziel:** Fasern aus TMS´-Cellulose herzustellen nach Derivatisierung in IL

R= H or SiMe₃

Umsetzung in IL für 2h bei 80°C, AGU:1,1,1,3,3,3-Hexamethyldisilazan 1:1, 1:3, 1:5

In allen IL konnten nur mäßige DS-Werte erreicht werden (Maximal: 1,45 in EMIMAc-Molverhältnis 1:3), selbst ein Überschuss an Reagenz führt zu keiner Steigerung, teilweise gab es gar keine Umsetzung, wie z.B. in BMIMCI, 1:5


Reagenz und IL sind nicht mischbar = Grund für schlechte Ausbeute und schlechte Steuerbarkeit des Substitutionsgrades

Synthese von Trimethylsilycellulose in IL

<u>Problematik:</u> Das Produkt Trimethylsilylcellulose ist schon bei geringem DS unlöslich in EMIMAc. Das bewirkt ein Ausfallen und einen Übergang vom homogenen zum heterogenen Reaktionsverlauf

→ Silylierung nicht geeignet für Vorhaben

Celluloselösung in EMIMAc

Celluloselösung einige Minuten nach Zugabe des Silylierungsreagenzes

Zusammenfassung:

- lonische Flüssigkeiten und daraus hergestellte Celluloselösungen zeigen die erwarteten hohen thermischen Stabilitäten
- auch beim Zusatz von reaktiven Funktionaladditiven (Nanosilber, Aktivkohle) werden im Gegensatz zu Lösungen in NMMO noch ausreichend hohe thermische Stabilitäten erreicht
- Fasern aus Nanosilber modifizierten Fasern zeigen bereits bei Zusätzen von ≤ 0,1 % eine gegenüber dem reinen IL's hohe bakteriostatische Wirkung, die auch nach 10 Wäschen bei 60 °C erhalten bleibt
- beim Inkorporieren von Aktivkohle in Celluloselösungen in IL's wird eine deutliche Deaktivierung des Adsorptionsvermögens gegenüber der reinen Kohlen bzw. in NMMO-Lösung inkorporierten Kohlen gefunden
- bei der Acetylierung von Celluloselösungen in IL's werden bei Verwendung von IL's vom 1-N-Alkyl-3-Methylimidazolium-Typ unterschiedlich hohe DS erreicht
- verspinnbare Celluloseacetatlösungen werden nur bei Verwendung von BMIMCI als IL erhalten
- die Umsetzung mit Vinylacetat bei RT führt zu Celluloseacetaten mit interessanten Eigenschaften
- eine Umsetzung mit HMDS führt bereits bei niedrigem Umsatz zu inhomogenen Ansätzen und wird nicht weiter verfolgt

Öffentlichkeitsarbeit:

B. Ondruschka, A. Stark, Th. Heinze, B. Kosan, F. Meister: "Reiß- und Schlingenfest – Ionische Flüssigkeiten: prozessinhärente Sicherheit in der Cellulosederivatisierung und –verformung"; CIT plus 4, 2006, 47-48

A. Stark, B. Kosan, B. Ondruschka, Th. Heinze, F. Meister, "Cellulose – Alles kein Hexenwerk – Smarte Lösungen für innovative Celluloseprodukte"; Labor & More 02/2006, 62-63

Zusätzlich wurde die Pressemitteilung verwendet in:

- "Haut Couture" aus Holz", Uni-Journal Jena, Nr.02, SS2007, 22
- "lonische Flüssigkeiten für die Celluloseverarbeitung", LaborPraxis Juni 2007, 10
- "Ionische Flüssigkeiten zur Zelluloseverarbeitung", CHEManager 12/2007, 24
- "Neue Materialien aus Zellulose Forscher der Universität Jena verändern Rohstoff", denkform 02/2007, 2
- "Ionische Flüssigkeiten für die Zelluloseverarbeitung", Git Labor-Fachzeitschrift, 6/2007, 444

Vielen Dank für Ihre freundliche Aufmerksamkeit!

Projektkoordinator:

Ostthüringische Materialprüfgesellschaft für Textil und Kunststoffe mbH, Breitscheidstraße 97, 07407 Rudolstadt, www.ompg.de

Danksagung:

Die vorgestellten Ergebnisse wurden im Rahmen des Projektes "Innovative Lösungsmittelkonzepte für die umweltfreundliche Celluloseverformung – Cellulosefunktionsfaserstoffe" (Az.: 24762 – 31) erarbeitet, das von der Deutschen Bundesstiftung Umwelt gefördert wird. Die Autoren danken für die finanzielle Unterstützung.