

Entwicklung und Herstellung von halogenfreien, umweltfreundlichen mit Wasser nicht-mischbaren ionischen Flüssigkeiten

Dr. Marc Uerdingen Juni 2008

Solvent Innovation Firma

- 1999: Spin-Off der Technischen Universität Aachen von C. Hilgers und P. Wasserscheid
- 2004: Firmensitz im BioCampus Cologne
- Forschungs-und Produktionskapazität von kg bis einstelligen Tonnenmaßtab
- Dez. 2007: Gesellschaft der MERCK KGaA, Darmstadt

German Innovation Industry Award

Firmenstruktur

Merck Group

Business sectors

Pharmaceuticals

Merck Serono

Consumer Health Care

Chemicals

Liquid Crystals

Performance & Life Science Chemicals

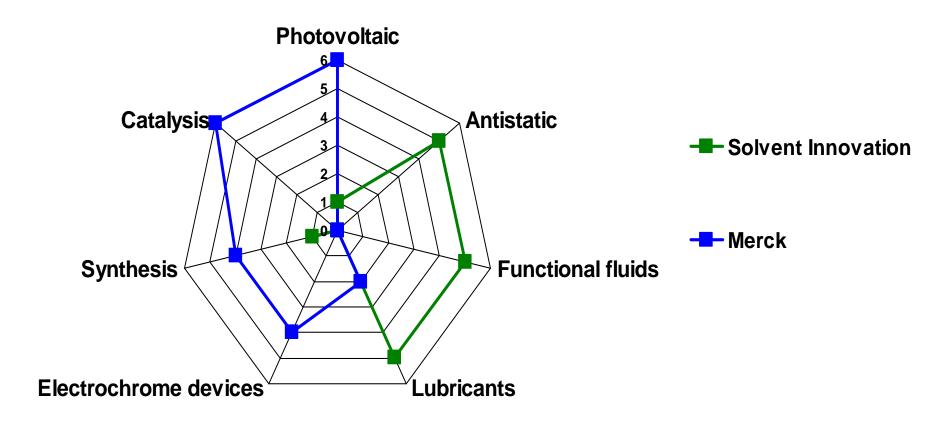
Cross-divisional functions / Central functions

) i v i s i o n s

^{*} The Generics division was sold on October 2, 2007

Performance & Life Science Chemicals

Life Science Solutions subdivision


- Products and services for the entire process chain of drug development and manufacture
 - chemical synthesis and biotechnological processes, analysis, isolation and purification of chemical and biotechnologically produced substances
 - formulation development
- Cosmetic active ingredients
 - for sun protection products (Eusolex®)
 - for skincare products (RonaCare[®]
- Innovative applications for technical industries
 - Optics, Organics Ionic Liquids
- Products and services for the biological enhancement of plant health & vigor

Strategischer Fit Komplementäre Anwendungen

Relative Strenghts in different Applications

Ionische Flüssigkeiten eine faszinierende Klasse neuer flüssiger Materialien....

- schwer entflammbar
- praktisch nicht flüchtig
- flüssig unter 100℃
- mit einzigartigen Eigenschaften für

Antistatika

Betriebsmittel

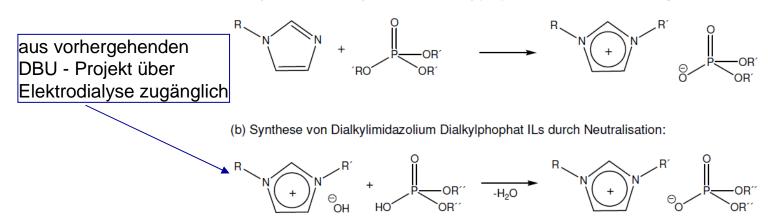
Strukturelle Vielfalt

- Hydrophobizität

$$CI^{-} Br^{-} I^{-}$$

$$ON_{-} H_{0}S_{0}^{-} N \equiv C-S^{-} F_{F}F_{F}^{-} F_{F}^{-} F_{$$

Hydrophobizität durch: Anionen - Fluorierung; Kation - Kettenverlängerung


Synthese der Alkyl₂PO₄- IL Bibliothek

Synthese der R₂PO₄-ILs erfolgt über zwei Routen:

- A) Direktalkylierung
- B) Neutralisationsreaktion
- C) Anionenaustausch über [Bu₄P][R₂PO₄] Zwischenstufen

(a) Synthese von Dialkylimidazolium Dialkylphophat ILs durch Quarternierungsreaktion:

→ Substanzbibliothek von insgesamt 32 Verbindungen hergestellt

Charakterisierung der Alkyl₂PO₄- IL Bibliothek

→ Substanzbibliothek von insgesamt 32 Verbindungen hergestellt

	Ausbeute [%]*	Wassergehalt [ppm]
[MMIM][Me ₂ PO ₄]	>99	<3000
[EMIM][Me ₂ PO ₄]	>99	<3000
$[BMIM][[Me_2PO_4]]$	>99	<3000
[HMIM][Me ₂ PO ₄]	>99	<3000
[OMIM][Me ₂ PO ₄]	98	<3000
$[EMIM][Et_2PO_4]$	>99	<1000
$[EEIM][Et_2PO_4]$	>99	<1000
$[BEIM][[Et_2PO_4]$	>99	<1000
[EHIM][Et ₂ PO ₄]	>99	<1000
$[EOIM][Et_2PO_4]$	98	<1000
[BMIM][Bu ₂ PO ₄]	>99	<1000
[BEIM][Bu ₂ PO ₄]	>99	<1000
[BBIM][Bu ₂ PO ₄]	98	<1000
[BHIM][Bu ₂ PO ₄]	99	<1000
[BOIM][Bu ₂ PO ₄]	98	<1000
[AllyIMIM][AllyI ₂ PO ₄]	>99	<1000
$[AllylBIM][Allyl_2PO_4]$	>99	<1000
$[(MeEG)MIM][Me_2PO_4]$	98	<1000
$[(MeEG_2)MIM][Me_2PO_4]$	98	<1000
[(MeEG ₃)MIM][Me ₂ PO ₄]	>99	<1000

^{*} Umsatznachweis erfolgte über ¹H-NMR; >99% heißt, dass kein freies Edukt mehr detektiert werden konnte.

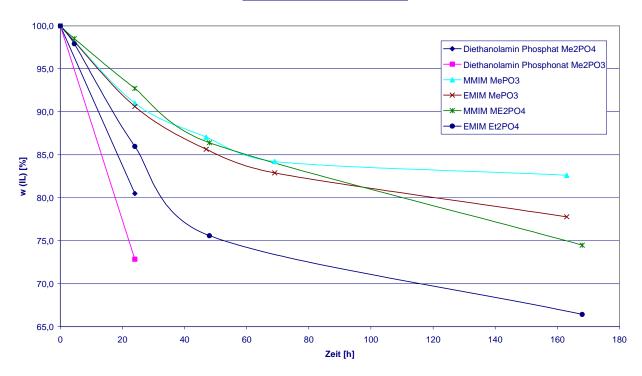
	Ausbeute [%]	Wassergehalt [ppm]
[MMIM][Bu ₂ PO ₄]	>99	<1000
[EMIM][Bu ₂ PO ₄]	>99	<1000
[EEIM][[Bu ₂ PO ₄]	>99	<1000
[MMMIM][Bu ₂ PO ₄]	>99	<1000
[MMIM][Bis(2-ethylhexyl)PO ₄]	>99	<1000
[EMIM][Bis(2-ethylhexyl)PO ₄]	>99	<1000
$[BMIM][Bis(2\text{-}ethylhexyl)PO_4]$	>99	<1000
[EEIM][Bis(2-ethylhexyl)PO ₄]	>99	<1000
[MMMIM][Bis(2-ethylhexyl)PO ₄]	>99	<1000
[BMMIM][Bis(2-ethylhexyl)PO ₄]	>99	<1000
[MMIM][Ph ₂ PO ₄]	>99	<1000
[EMIM][Ph ₂ PO ₄]	>99	<1000
[EEIM][Ph ₂ PO ₄]	>99	<1000

Bis auf die in 2-Position substituierten IL's liegen alle bei RT flüssig vor!

Charakterisierung der Alkyl₂PO₄- IL Bibliothek

Dichte, Viskosität und Zersetzungspunkt (Auswahl)

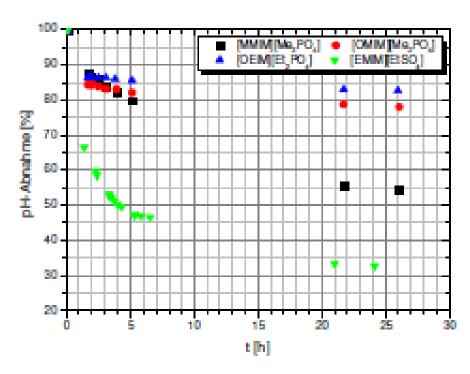
Tabelle 6: Dichte, Viskosität und Zersetzungstemperatur der hergestellten Phosphatschmelzen.


	Dichte [g·ml ⁻¹]	Viskositāt [mPa-s]	Zersetzungsterr [°C]	nperatur	
[MMIM][Me ₂ PO ₄]	1,26	363	300	[5]	
[EMIM][Me ₂ PO ₄]	1,21	394	270		
[BMIM][[Me ₂ PO ₄]	1,18	696	282	Dichte zwisch	nen 1,0 und 1,3 g/ml
[HMIM][Me ₂ PO ₄]	1,11	638	290		_
[OMIM][Me ₂ PO ₄]	1,08	1182	292	N. 01 . 1 . 11 .	
[(MeEG)MIM][Me ₂ PO ₄]	1,23	769	289	Viskosität: vo	on
[(MeEG ₂)MIM][Me ₂ PO ₄]	1,21	398	274	320 mPa*s [/]	MeEG ₃)MIM][Me ₂ PO ₄]
[(MeEG ₃)MIM][Me ₂ PO ₄]	1,19	324	302		0, 2 - -
[EMIM][Et₂PO₄]	1,14	457	263	bis 11 Pa*s [N	MMIM][Ph ₂ PO ₄]
[EEIM][EtpPO4]	1,12	518	242		- ·
[BEIM][[Et ₂ PO ₄]	1,08	1115	239	7	050 0000
[EHIM][Et ₂ PO ₄]	1,06	1068	281	Zersetzung:	250-300℃
[EOIM][Et ₂ PO ₄]	1,04	1212	284		stabilste ab 327℃ (Onset)
[MMIM][Bu ₂ PO ₄]	1,07	1436	249		
[EMIM][Bu ₂ PO ₄]	1,07	901	256		
[EEIM][Bu ₂ PO ₄]	1,06	853	256	Alle Wasser-ı	mischbar!
[BMIM][Bu ₂ PO ₄]	1,04	1896	266	<u> </u>	
[BEIM][Bu ₂ PO ₄]	1,03	2377	253		

Stabilität der Alkyl₂PO₄- ILs

A) Langzeit - Temperaturstabilität

Temperaturstabilitäten bei 200℃


Stabilität der Alkyl₂PO₄- ILs

B) Hydrolysestabilität

Hydrolyse ausgewählter Dialkylphosphat-ILs Vergleich zu [EMIM][EtSO₄].

Molenverhältnis IL:Wasser von 1:1000 bei T=95 ℃

	pH-Abnahme über 25h
EMIM EtSO ₄	68%
OMIM Me ₂ PO ₄	10%
[OEIM] Et ₂ PO ₄	10%
MMIM Me ₂ PO ₄	45%

→ Erhöhte Stabilität gegenüber Sulfaten

Stabilität der Alkyl₂PO₄- ILs

C) Korrosion

Korrosionsverhalten ist abhängig von:

- Temperatur
- Reinheit der IL (pH-Wert, Fremdionen z.B. Cl⁻ od. SO₄²⁻)
- Metallkontakt
- Fluidität

IL: MMIM Me2PO4

EMIM Et2PO4

Metall: 100Cr6

ST 52-3

42erMo8

Cu

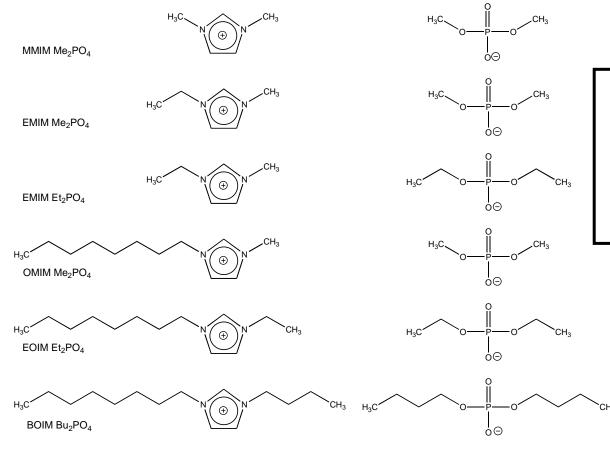
Bedingung: 150℃, 24h und 100h

Stabilität der Alkyl₂PO₄- ILs

C) Korrosion

Versuch	ionische Flüssigkeit	Polymer	Metallspäne	visuelle Prüfung nach 0h	visuelle Frutung nach 24h	visuelle Prüfung nach 100h
SD015-96	MMIM Me ₂ PO ₄	-	-	ok	ok	-
SD015-97	MMIM Me ₂ PO ₄	-	100 lv 6	Ok	ok	-
SD015-98	MMIM Me ₂ PO ₄	-	Cu	ok	Korrosion, grüne Färbung der IL	-
SD015-99	MMIM Me ₂ PO ₄	-	St52-3	ok	leichte Korrosion	<i>j</i> -
SD015-100	MMIM Me ₂ PO ₄		42erMo4	ok	ok	-
SD037-76	MMIM Me ₂ PO ₄	SD-31	-	Polymer nicht vollständig gelöst	ok, Polymer visht vollständig gelöst	ok, Polymer nicht vollständig gelöst
SD037-77	MMIM Me ₂ PO ₄	SD-31	04 lv 6	Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst
SD037-78	MMIM Me ₂ PO ₄	SD-31	Cu	Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst
SD037-79	MMIM Me ₂ PO ₄	SD-31	St52-7	Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst
SD037-80	MMIM Me ₂ PO ₄	SD-31	42erMo8	Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst	ok, Polymer nicht vollständig gelöst
SD005-36	EMIM Et ₂ PO ₄		-	ok	ok	ok
SD005-37	EMIM Et ₂ PO ₄		100 lv 6	ok	ok	ok
SD005-38	EMIM Et ₂ PO ₄		Cu	ok	sarke Korrosion, grüne Färbung der	
SD005-39	EMIM Et ₂ PO ₄		St52-3	ok	ok	ok
SD005-40	EMIM Et ₂ PO ₄		42erMo4	ok	ok	ok
SD033-56	EMIM Et ₂ PO ₄	SD-32	-	ok	he igelbe Färbung der IL	hellgelbe Färbung der II Additiv flockt aus
SD033-57	EMIM Et ₂ PO ₄	SD-32	04 lv 6	ok	hellgelbe Färbung der IL	hellgelbe Färbung der II Additiv flockt aus, minimale Korrosion
SD033-58	EMIM Et ₂ PO ₄	SD-32	Cu	ok	orange Färbung der IL	olive-grûne Fârbung de IL
SD033-59	EMIM Et ₂ PO ₄	SD-32	St52-7	ok	hellorange Färbung der IL	hellorange Färbung der
SD033-60	EMIM Et ₂ PO ₄	SD-32	42erMo8	ok	heligelbe Färbung der IL	heligelb Färbung der IL

24 h:


100 h:

Toxikologische Potential der Alkyl₂PO₄- ILs

Auswahl der Alkyl₂PO₄-ILs:

FH Neubrandenburg:

- Gentoxizität nach Ames
- Reizpotential (roten Blutkörperchentest)
- Leuchtbakterientest

Toxikologische Potential der Alkyl₂PO₄- ILs

Gentoxizität nach Ames mit Salmonella Zelllinie:

Keine für [MMIM][Me₂PO₄] / [EMIM][Et₂PO₄] beobachtbar mit zunehmender Kettenlänge steigt die Inhibierung

control	dose (mg/plate)	No. of rever- tants (mean)	stand. dev.	Mi *i
н,о	100.0	17.3	4.7	
2-nitrofluore ne ⁶	0.008	687,0	55.7	39.6
DMSO ³⁴	100.0	23.7	3.8	1.4
ionic liquid				
MMIM MoyPOs	1.0	23.3	4.5	1.3
	5.0	19.7	8.3	1.1
	20.0	20.3	3.5	1.2
EMIM Mo ₂ PO ₆	1.0	23.3	3.5	1.3
	5.0	21.0	3.5	1.2
	20.0	21.3	8.7	1.2
EMIM Et ₃ PO ₈	1.0	23.3	1.5	1.3
	5.0	19.3	3.1	1.1
	20.0	25.3	3.8	1.5

Augenreizung nach Invittox Protocol No. 37

(Kosmetikindustrie):

Keine für [MMIM][Me₂PO₄] / [EMIM][Et₂PO₄] beobachtbar mit zunehmender Kettenlänge steigt die Reizung

ionic liquid	^{a)} H ₅₀	$^{(b)}D_i$	L/D ratio	classification
	(mg/mL)	(%)		
MMIM Me ₂ PO ₄	no hemolysis	1.00		non-irritant
EMIM Me ₂ PO ₄	no hemolysis	1.00		non-irritant
EMIM Et ₂ PO ₄	no hemolysis	1.00		non-irritant
OMIM Me ₂ PO ₄	15.50	6.06	2.56	moderately irritant
EOIM Et ₂ PO ₄	7.10	-0.83	-8.53	moderately irritant
BOIM Bu ₂ PO ₄	4.60	-0.65	-7.03	moderately irritant
C ₁₆ MIM-DCA (RS 250)	0.01	-1.06	-0.01	very irritant

concentration, which results in a 50% hemolysis of cells

b) Denaturation index according to 3

Toxikologische Potential der Alkyl₂PO₄- ILs

Leuchtbakterientests von Vibrio fischeri:

Luminescence inhibition was determined according to *. A: V. fischeri luminescence activity was determined at different ILs concentrations according to *.. Data represent the IL molar concentrations conferring the half maximal luminescence inhibition after 30 min. B: Inhibition data (EC₅₀ values) from ILs previously tested and from common organic solvents (data taken from * and *).

A		В		
IL	EC _{so} (30 min)	IL/ organic solvent	EC _{so} (30 min)	
MMIM Me ₂ PO ₄	6.5*10 ⁻³	[EMIM] [CF ₃ SO ₃]	1.3*10-2	
EMIM Me ₂ PO ₄	6.0°10 ⁻³	[BMIM] Br	3.0*10 ⁻³	
EMIM Et₂PO₄	1.6*10-2	[EMIM] [EtSO ₄]	5.8*10 ⁻³	
OMIM Me ₂ PO ₄	4.5*10-6	MeEtPy [EtSO4]	7.1*10-3	
EOIM Et ₂ PO ₄	7.5*10 ⁻⁶	[EMIM] CI	1.0*10-2	
BOIM Bu ₂ PO ₄	3.0°10 ⁻⁶	Methanol	1.0*10 ¹	
C16 DMIM-DCA 15	103 ppm	Acetone	3.0*10-1	
		Acetonitril	5.9*10-1	
		MTBE	7.8*10 ⁻³	

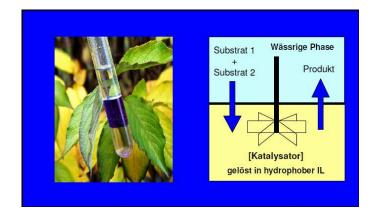
- Sehr geringe EC₅₀ Werte für
 [MMIM][Me₂PO₄] / [EMIM][Et₂PO₄]
- Methyl zu Ethyl erfolgt eine Reduzierung
- kleiner als für EMIM EtSO₄,
 (eingestuft als WGK 1)
- im Bereich von MTBE
- Zunahme des ökotoxikologischen mit steigender Kettenlänge

Zusammenfassung

- Substanzbibliothek von 32 Alkyl₂PO₄₋ILs über kostenattraktiv Wege in technischer Qualität synthetisiert
- Physikochemische Charakteriserung ergab das diese für halogenfreie ILs gute thermische und hydrolytische Stabilitäten aufweisen
- Viskositäten im Bereich von > 300 mPa*s besitzen und alle Wasser mischbar sind
- Niedrige Korrosiosneigung zeigen und leicht additivierbar sind
- Kurzkettige Alkyl₂PO₄-ILs sehr gute toxikologische Eigenschaften aufweisen und somit eine Alternative zu den SO₄-ILs darstellen bzw. Anwendung in offenen Systemen ermöglichen könnten

Ausblick

 Im weiteren Projektverlauf werden die beiden anderen Ansätze weiter verfolgt um Wasser nicht mischbare Systeme zu identifizieren



Kooperationspartner Prof. Peter Wasserscheid

finanzielle Unterstüzung

Danke für Ihre Aufmerksamkeit!