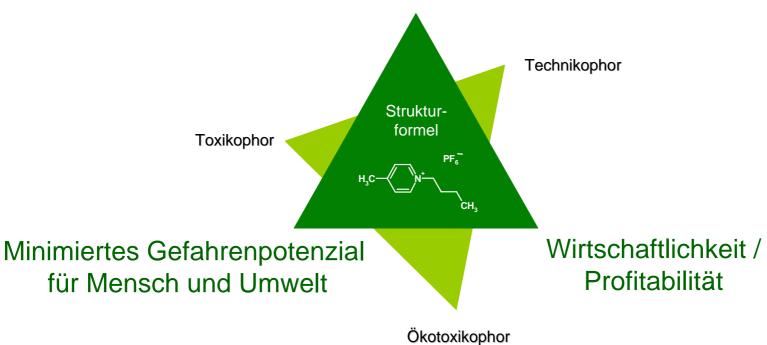

Ionische Flüssigkeiten als Additive für synthetische Schmieröle

Jorg Thöming UFT Universität Bremen



"Nachhaltiges Produktdesign" – ein Zielkonflikt

Technisches Leistungsprofil

Jastorff et al. 2003 Green Chemistry 5, 136-142

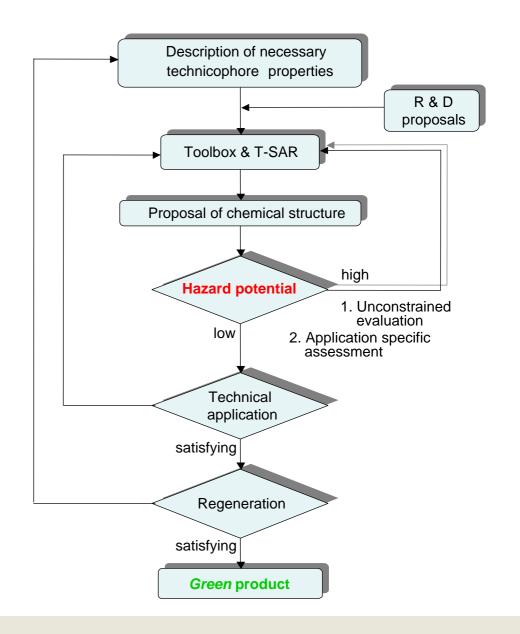
Twelve Principles of Green Chemistry

- 1. Prevention/avoidance preferable to treatment/control
- 2. Atom Economy
- 3. Less Hazardous Chemical Syntheses
- 4. Designing Safer Chemicals "Benign by Design"
- Safer Solvents and Auxiliaries
- 6. Design for Energy Efficiency
- 7. Use of Renewable Feedstocks
- 8. Reduce Derivatives
- 9. Catalysis
- 10. Design for Degradation
- 11. Real-time Analysis for Pollution Prevention
- 12. Inherently Safer Chemistry for Accident Prevention

Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30

Design-Potenzial: 10¹² Ionische Flüssigkeiten

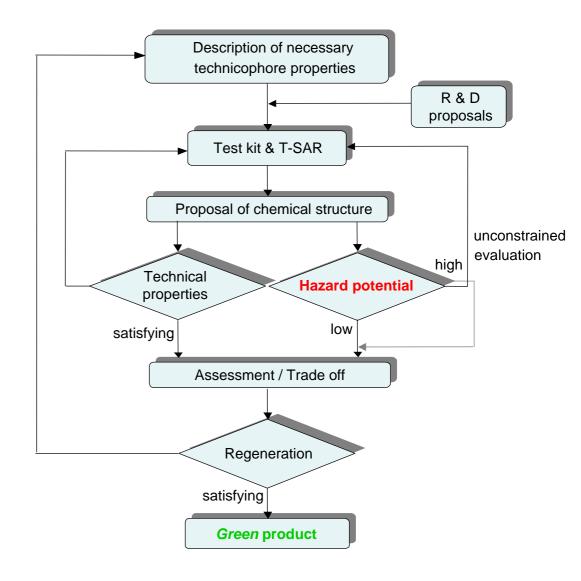
- ca. 2000 in der Literatur beschrieben
- ca. 400 kommerziell erhältlich



Algorithmus für ein nachhaltiges Design ionischer Flüssigkeiten

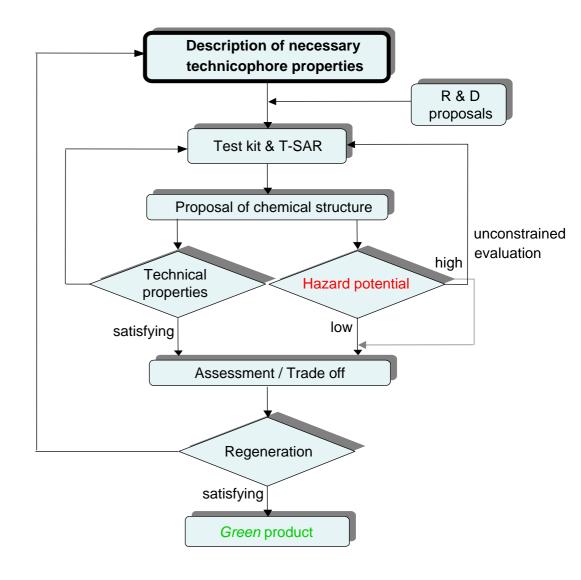
Jastorff et al. (2005) Green Chemistry 7, 362-372.

Potenzielle Eignung ionischer Flüssigkeiten als Schmierstoffe oder Additive für Schmierstoffe

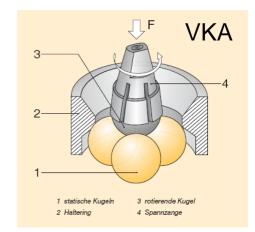

Ionische Flüssigkeiten

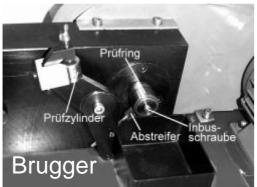
- haben einen verschwindend geringen Dampfdruck
- sind nicht entflammbar
- zersetzen sich allerdings bei hohen Temperaturen
- können über gute bis sehr gute Viskositätsindices verfügen
- können hervorragende Schmiereigenschaften haben
- können als Additive sehr gut löslich sein
- → 2001 erste Publikation ionischer Flüssigkeiten als Schmierstoffe

Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive



Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive




Schmierstoff-Additive: notwendige technische Eigenschaften

- Löslichkeit im Grundöl
- Verschleißminderung

- Vier Kugel Apparat, VKA
 Schweißkraftprüfung Extrem Pressure Wirksamkeit
 Dauerverschleißuntersuchung Anti Wear Eigenschaften
- Schwing Reibverschleiß Prüfung (SRV) Extrem Pressure und Anti Wear Verhalten
- Brugger Messgerät
 Lasttragevermögen, entstehende Verschleißkalotte
 Maß für Anti Wear Wirksamkeit
- Temperaturstabilität von IL und Lösung
- Korrosionsschutz

Zersetzungsprodukte ionischer Flüssigkeiten

Anion	(Oberfläche)	Kontaktmaterial
B F ₄ -	F-, B ₂ O ₃ , BN	Stahl/Sialon bzw. Si ₃ N ₄ /Sialon ¹
B F ₄ -, P F ₆ -	$BF_xbzw.PF_x$	Si ₃ N ₄ ²
$N(SO_2CF_3)_2^{-1}$	F ⁻ , FeS	Stahl ³
BF ₄ -	BN	Stahl/Sialon ⁴
BF ₄ -	FeF_2 , B_2O_3	Stahl ⁵
P F ₆ -	FePO ₄ , FeF ₂	Stahl ⁶
BF ₄ -	B_2O_3 , BN	Dy-Sialon/Si ₃ N ₄ ⁷

¹ C. Ye, W. Liu, Y. Chen, L. Yu, Chemical Communications 2001, 2244-2245.

Fett: Elemente, die an der zu schmierenden Kontaktstelle für Reaktionen zur Verfügung stehen sollen

² B. S. Phillips, J. S. Zabinski, *Tribology Letters* 2004, *17*, 533-541.

³ Q. Lu, H. Wang, C. Ye, W. Liu, Q. Xue, Tribology International 2004, 37, 547-552.

⁴ W. Liu, C. Ye, Y. Chen, Z. Ou, D. C. Sun, *Tribology International* 2002, 35, 503-509.

⁵ W. Liu, C. Ye, Q. Gong, H. Wang, P. Wang, Tribology Letters 2002, 13, 81-85.

⁶ H. Wang, Q. Lu, C. Ye, W. Liu, Z. Cui, Wear 2004, 256, 44-48.

⁷ C. Ye, W. Liu, Y. Chen, Z. Ou, Wear 2002, 253, 579-584.

Vergleich von Reibungskoeffizienten

Reibungskoeffizienten ¹

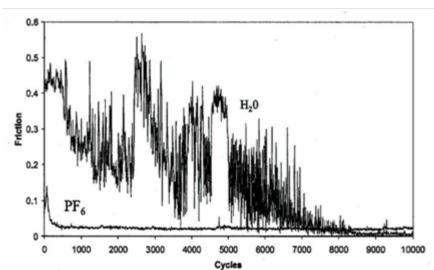
(Optimol SRV Tester, ball-on-disc, Belastung 50 N, Frequenz 25 Hz, Amplitude 1mm)

Reibungspaar (Ball/Disc)	Reibungskoeffizient			
	HMIM PF ₆	Phosphazen	PFPE	
Stahl/Stahl	0,065	0,098	0,145	
Stahl/Al	0,040	0,128	-	
Stahl/Cu	0,025	0,117	0,145	
Stahl/SiO ₂	0,060	0,110	0,132	
Si ₃ N ₄ /SiO ₂	0,083	0,115	0,132	
Stahl/Si(100)	0,050	0,102	0,145	
Stahl/Sialon	0,065	0,100	0,120	
Si ₃ N ₄ /Sialon	0,065	0,105	0,130	

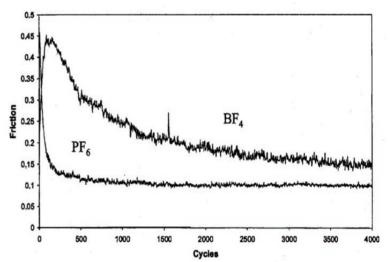
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

PFPE = Perfluoropolyether CF₃CF₂ + CFCF₂O + CF₂CF₂CF₃CF₃

¹ C. Ye, W. Liu, Y. Chen, L. Yu, Chemical Communications 2001, 2244-2245.



Vergleich verschiedener ionischer Flüssigkeiten


N;+;N— N;=

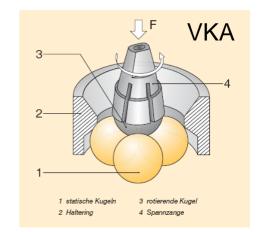
als Additive

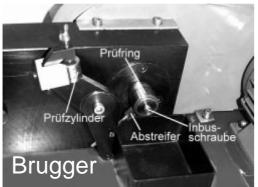
([BMIM]PF₆, [EMIM]BF₄)

 PF_6 friction traces on smooth Si_3N_4 from a pin-ondisk tribometer (sample roughness = $0.02\mu m$) ¹

Ionic liquid comparison on Si₃N₄ substrates from a pin-on-disk tribometer ¹

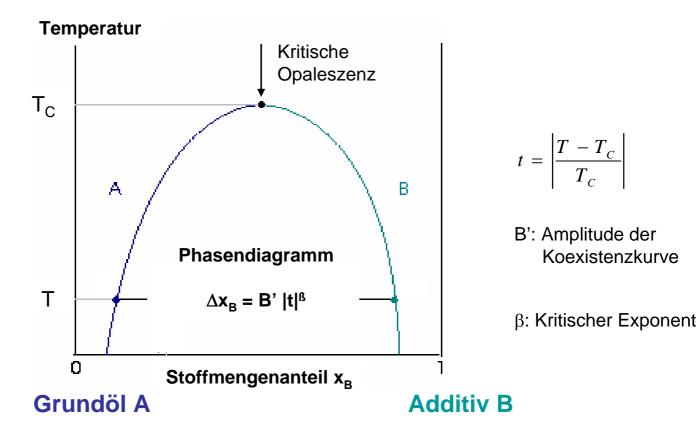
¹ B. S. Phillips, J. S. Zabinski, *Tribology Letters* 2004, *17*, 533-541.



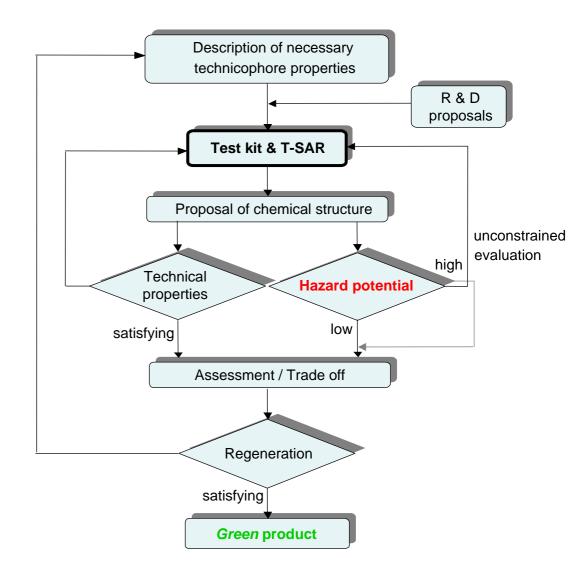

Schmierstoff-Additive: notwendige technische Eigenschaften

Löslichkeit im Grundöl

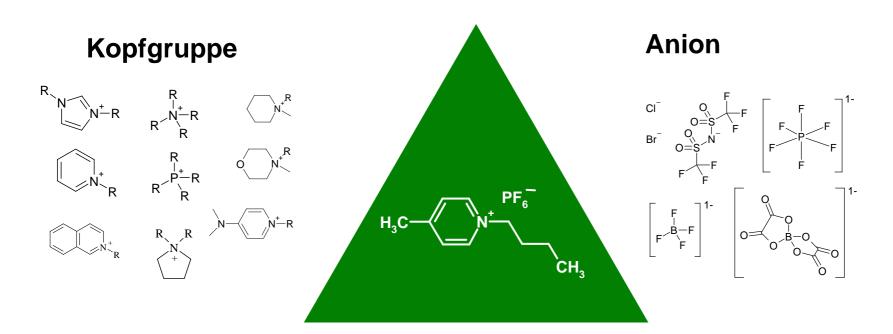
- Verschleißminderung
 - Vier Kugel Apparat, VKA
 Schweißkraftprüfung Extrem Pressure Wirksamkeit
 Dauerverschleißuntersuchung Anti Wear Eigenschaften
 - Schwing Reibverschleiß Prüfung (SRV) Extrem Pressure und Anti Wear Verhalten
 - Brugger Messgerät
 Lasttragevermögen, entstehende Verschleißkalotte
 Maß für Anti Wear Wirksamkeit
- Temperaturstabilität von IL und Lösung
- Korrosionsschutz



Grundproblem der Löslichkeit: Mischungslücken


van der Waals mean field* ⁾	Ising*)		
$\beta = 0.5$	$\beta = 0.325$		

^{*)} Saracsan (2006) Doktorarbeit, Universität Bremen


Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive

Design von Ionischen Flüssigkeiten

Kopfgruppe

Seitenkette

Anion

$$R$$
 OH

$$R^{\bigcirc}O^{\bigcirc}$$

$$R$$
 0

Kopfgruppe

Seitenkette

Anion

Cl-

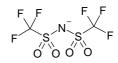
Br⁻

 $N(CN)_2^{-1}$

PF₆

 BF_4^-

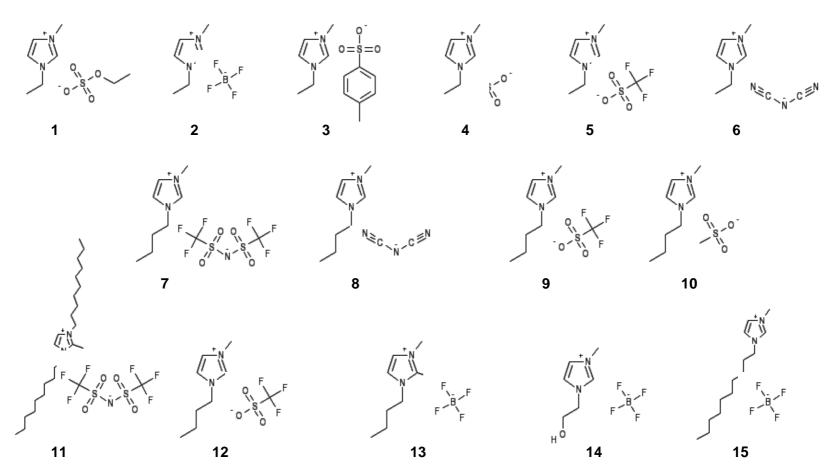
Kopfgruppe


Seitenkette

Anion

$$[PR_4]^+$$

$$[NR_4]^+$$


$$\left(\begin{array}{c} + \\ \end{array}\right)_{N-R}$$

Löslichkeitssreening – Ionische Flüssigkeiten mit Imidazolium-Kopfgruppe im "test kit"

1) 1-Ethyl-3-methylimidazolium ethylsulfat 2) 1-Ethyl-3-methylimidazolium tetrafluoroborat 3) 1-Ethyl-3-methylimidazolium tosylat 4) 1-Ethyl-3-methylimidazolium tosylat 4) 1-Ethyl-3-methylimidazolium triflat 6) 1-Ethyl-3-methylimidazolium dicyanamid 7) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imid 8) 1-Butyl-3-methylimidazolium dicyanamid 9) 1-Butyl-3-methylimidazolium triflat 10) 1-Butyl-3-methylimidazolium methanesulfonat 11) 1,3-Didecyl-2-methylimidazolium bis(trifluoromethylsulfonyl)imid 12) 1-Butyl-2,3-dimethylimidazolium tetrafluoroborat 14) 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborat 15) 1-Decyl-3-methylimidazolium tetrafluoroborat.

Löslichkeitssreening – Ionische Flüssigkeiten mit Pyridinium-, Piperidinium- und Ammonium-Kopfgruppen im "test kit"

16) 1-Butyl-3-methylpyridinium tetrafluoroborat **17)** 1-Butyl-4-methylpyridinium tetrafluoroborat **18)** 1-Methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imid **19)** Methyltrioctylammonium bis(trifluoromethylsulfonyl)imid **20)** Butyltrimethylammonium bis(trifluoromethylsulfonyl)imid.

Löslichkeitssreening – Weitere ionische Flüssigkeiten mit Phosphonium-Kopfgruppen im "test kit"

* R= Mix aus Decyl, Undecyl und Dodecyl

21) Triisobutylmethylphosphonium tosylat 22) Triisobutylmethylphosphonium methyl sulfat 23) Ethyltributylphosphonium diethyl- phosphat 24) Tributyltetradecylphosphonium tosylat 25) Trihexyltetradecylphosphonium dicyanamid 26) Trihexyltetradecylphosphonium decanoat 27) Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinat.

Löslichkeitssreening – Weitere ionische Flüssigkeiten mit Pyrrolidinium-, Sulfonium- und Pyridinium-Kopfgruppen im "test kit"

28) 1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imid 29) 1-Butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imid 30) 1-Butyl-1-methylpyrrolidinium tetrafluoroborat 31) 1-Butyl-1-methylpyrrolidinium dicyanamid 32) Triethylsulfonium bis(trifluoromethylsulfonyl)imid 33) Diethylmethylsulfonium bis(trifluoromethylsulfonyl)imid 34) 1-Butylpyridinium tetrafluoroborat

Löslichkeitssreening – Ionische Flüssigkeiten mit sehr lipophilen Anionen im "test kit"

35) 1-Hexyl-3-methyl-1H-imidazolium tris[(trifluormethyl)sulfonyl]methan 36) Trihexyl(tetradecyl)phosphonium [trifluorotris-(pentafluorethyl)phosphat] 37) N,N,N-Trimethylmethanaminium [trifluorotris(pentafluorethyl)phosphat] 38) 1-Ethoxycarbonyl-methyl-1-methylpyrrolidinium tris(pentafluoroethyl)-trifluorophosphate 39) 1-Hexyl-3-methyl-1H-imidazolium [trifluorotris-(heptafluorphosphat] 40) 1-Ethyl-3-methyl-1H-imidazolium [trifluorotris-(heptafluorethyl)phosphat] 42) Ethyl-(2-methoxyethyl)-dimethylammonium tris(pentafluoroethyl)-trifluorophosphate 43) 1-Butyl-4-methylpyridinium [trifluorotris(pentafluorethyl)phosphat]

Löslichkeitssreening –lonische Flüssigkeiten u.a. mit Etherfunktionalitäten im "test kit"

$$H_{3}C \stackrel{\text{N}}{\longrightarrow} CH_{3}$$

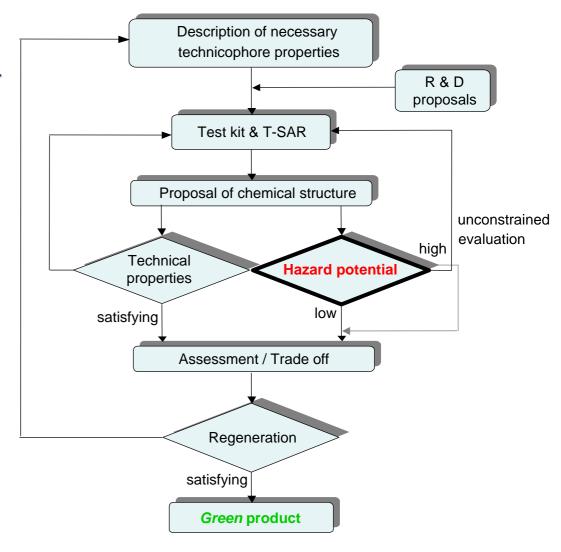
$$H_{4}C \stackrel{\text{N}}{\longrightarrow} CH_{3}$$

$$H_{5}C \stackrel{\text{N}}{\longrightarrow} H$$

44) 1-Ethyl-3-methyl-1H-imidazolium tetracyanoborat 45) 1-Ethyl-3-methyl-1H-imidazolium hexafluorophosphat 46) ECOENG 500 47) 1-Octylchinolinium bromid 48) 1-Butyl-3-methyl-1H-imidazolium alpha-Methyl-omega-(sulfooxy)poly(oxy-1,2-ethandiyl) 49) 1-Methyl-3-(tridecafluorooctyl)-1H-imidazolium hexafluorophosphat 50) 2-Hydroxy-N,N,N-trimethylethanaminium dihydrogenphosphat 51) 1-Ethyl-3-methyl-1H-imidazolium diethylphosphat 52) 2-Methoxy-N-(2-methoxyethyl)ethanamin sulfamat

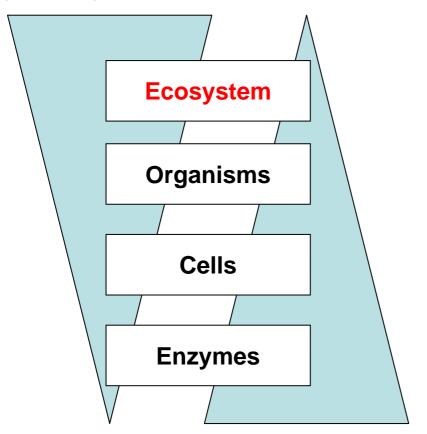
50

Löslichkeitssreening –lonische Flüssigkeiten u.a. mit einem Bor-Cluster als Anion im "test kit"


55

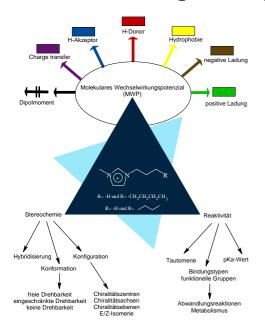
53) Kalium[(trihexylammonio)dodecahydro-closo-dodecaborat] **54)** Kalium[[tris(4-methylbutyl)ammonio]dodecahydro-closo-dodecaborat] **55)** Lithium[(trihexylammonio)dodecahydro-closo-dodecaborat]

Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive



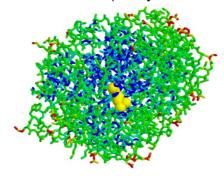
Komplexitätslevel zur Bestimmung biologischer Aktivität von Chemikalien

High ecological relevance

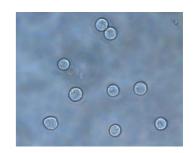

High predictive potential for SAR

Jastorff et al. (2003) Green Chemistry 5, 136-142

Struktur-Wirkungs-Analyse

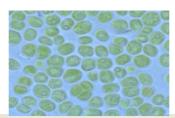

Wachstumshemmtest

mit Lemna minor ISO TC 147/SC 5 N draft

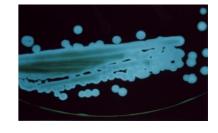


Enzymhemmtest

(Acetylcholinesterase)


Zellvitalitätstest WST-1-Assay mit IPC-81 - Zellen

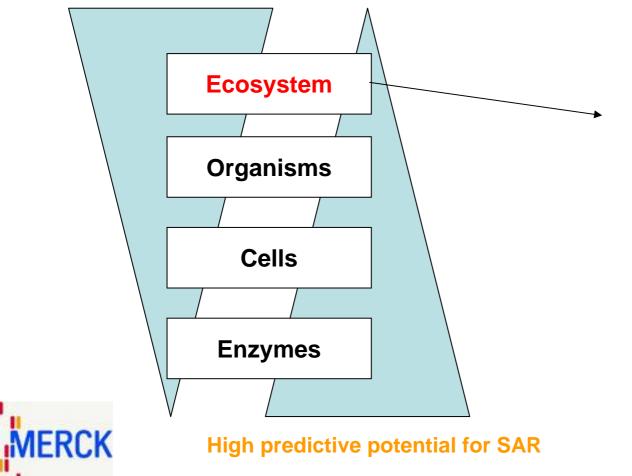
Die Testbatterie


Reproduktionshemmtest

limnische Grünalge (Scenedesmus vacuolatus)

Lumineszenzhemmtest

marines Bakterium (*Vibrio fischeri*), DIN 38412 L 341



Komplexitätslevel zur Bestimmung biologischer Aktivität von Chemikalien

High ecological relevance

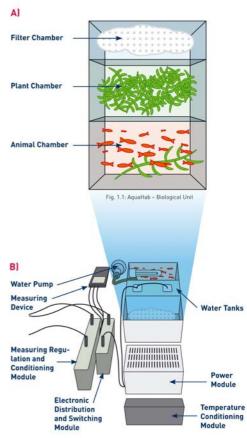
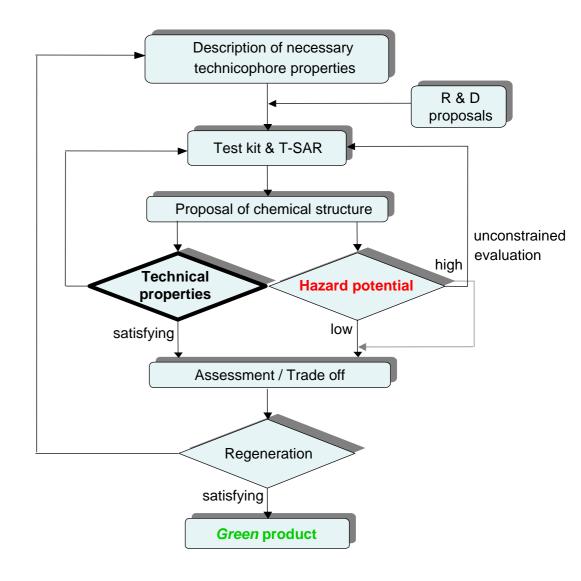



Image courtesy of OHB-System AG

Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive

Löslichkeits-Vorscreening

Bewegung und Schlieren

"etwas" Bewegung

'etwas" Bewegung

:

						ii ago	Boobaomang
22	Aliquat HTA - 1	Bewegung und Kristallbildung	"leichte" Bewegung und Schlieren	Bewegung und Kristallbildung	Bewegur		
23	[HMIM] PF6	Bewegung und Schlieren	"etwas" Bewegung		"leichte" Schlierer	L	
24	[BMPyrr] Tf			Topfen nicht mittig	Bewegur		\
25	Aliquat 134	Bewegung; Phasengrenzen nah am Rand, aber vorhanden				O	
26	P666 (14) N(CN)2	Bewegung und Schlieren	Bewegung und Schlieren		\		
27	P666(14) CI		Schlierenbildung		"leichte" Schlierer		Ansatz: 1:1
28	P666(14) Br				"leichte" Schlierer		
29	Pi4i4i41 Otos		"etwas" Bewegung	Bewegung		Schlierenbildung	"leichte" Bewegung und Schlieren
30	P4442 Et2 PO4	Bewegung und Schlieren	Bewegung und Schlieren	Bewegung	trennt sich aber wieder in zwei Phasen (mögliche andere	Bewegung und Schlieren	
31	TE60 Dispers 650	Schlierenbildung			Bewegung und Schlieren	Bewegung und Schlieren	Schlierenbildung
32	TE60 Dispers 651	Schlieren - und Tröpfchenbil- dung	Schlieren - und Tröpfchenbil- dung	Tröpfchenbildung	Bewegung und Schlieren	Tröpfchenbildung	Tröpfchenbildung
33	LA - W - 1006	Tropfen löst sich voll im Öl auf, die neue Mischung aber nicht. Man	Bewegung und Schlieren	Bewegung und Schlieren	Bewegung und Schlieren und ausbildung mehrerer Phasen	Bewegung und Schlieren	Bewegung und Schlieren
34	LA - D - 868			"etwas" Bewegung	"leichte" Bewegung und Schlieren	"etwas" Bewegung	Schlierenbildung und keine Tropfenform
35	TEGO IS IL K5 BTA	"etwas" Bewegung			"etwas" Bewegung	Bewegung	
36	N2348 N(CN)2			Schlierenbildung	"etwas" Bewegung	Bewegung und Schlieren	Bewegung und Schlieren
37	Poly-1-Allyl-3-butan- sulfonsäure BTA	Bewegung und Schlieren	Bewegung und Schlieren - und Micellenbildung	Schlierenbildung	"etwas" Bewegung	Bewegung und starke Schlieren	starke Bewegung und Schlieren

Bewegung

Bewegung

viel Bewegung

"etwas" Bewegung

38

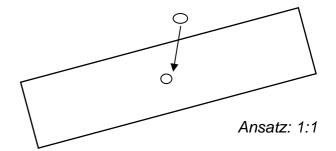
N1248 N(CN)2

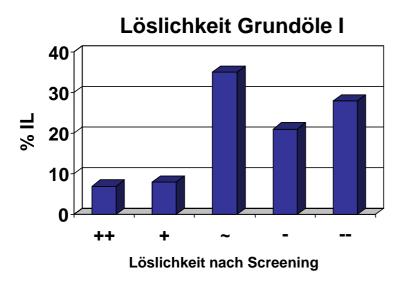
N1248 Otos

starke Bewegung und

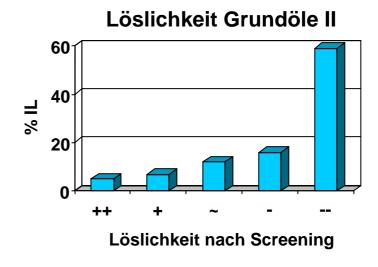
"leichte" Bewegung und

Schlieren


Schlieren

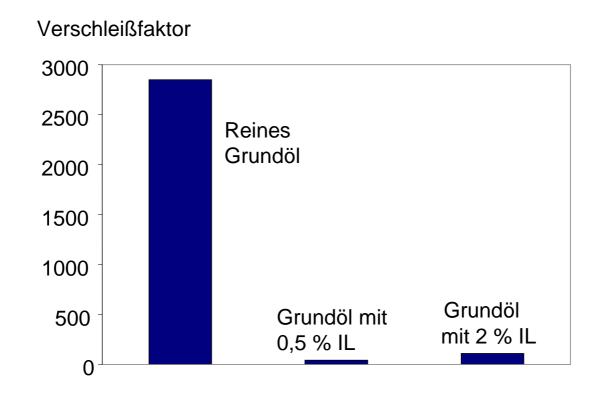

Vorscreening-Methode

2 Tropfen auf Objektträger - Beobachtung


Löslichkeit ausgewählter ionischer Flüssigkeiten in Schmierstoff-Grundölen

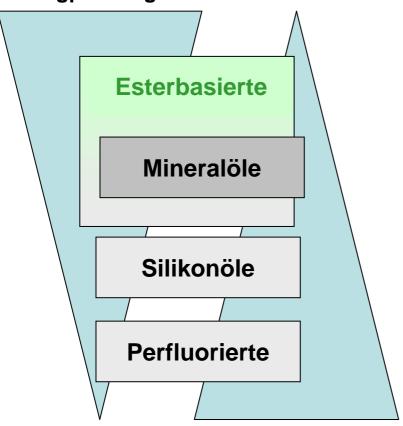
2 Tropfen auf Objektträger - Beobachtung

6 Grundöle (eher polar) und 54 IL



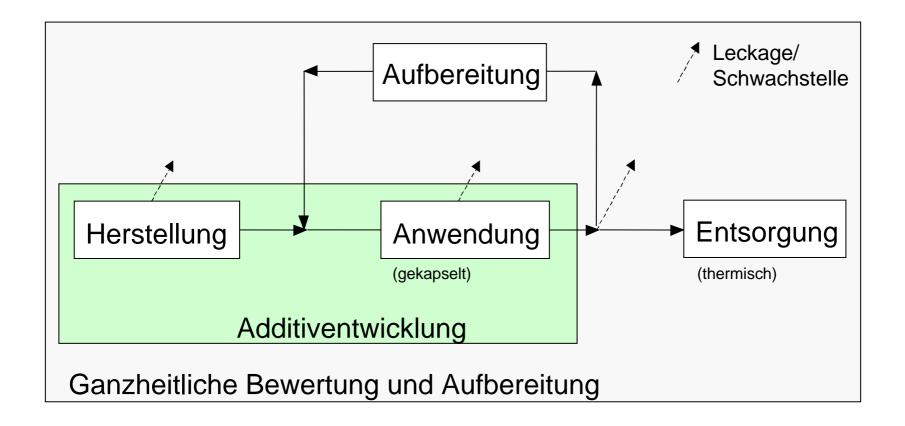
3 Grundöle (eher unpolar) und 54 IL

Einfluss einer ionischen Flüssigkeit als Additiv in einem Grundöl auf Verschleiß



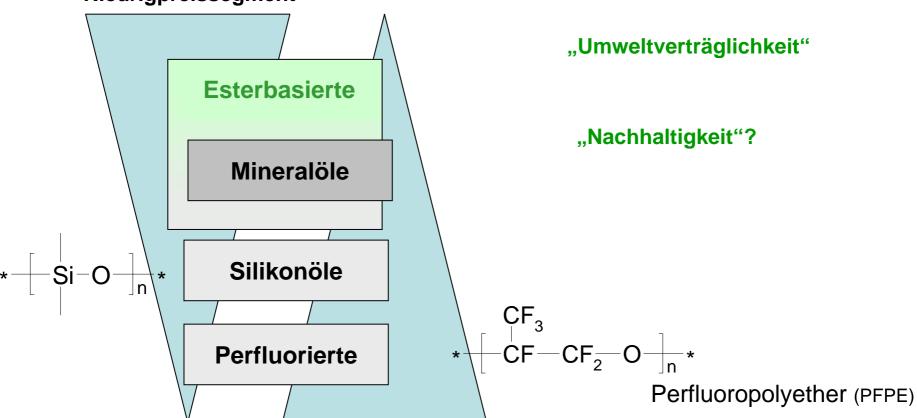
Auswahl des Grundöls

Hohe Bioabbaubarkeit Niedrigpreissegment


Hohe Standzeit (und Persistenz)
Hohe Temperaturbeständigkeit
Hochpreissegment für Spezialanforderungen

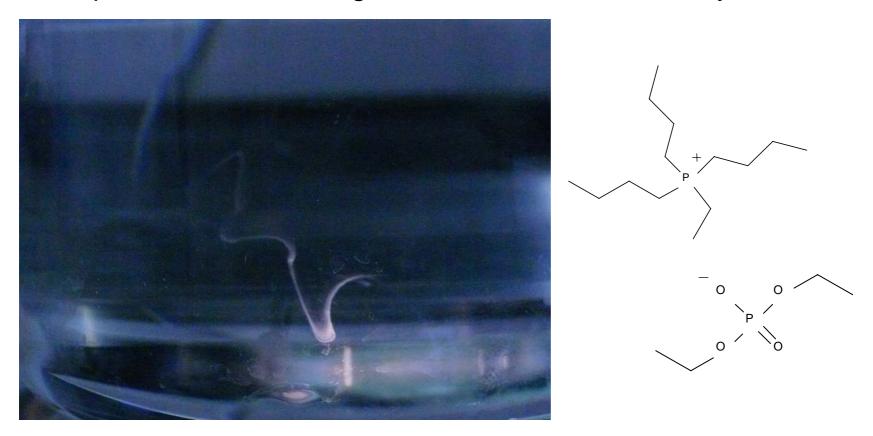
Additiv-Screening für

nachhaltige Hochleistungsschmierstoffe



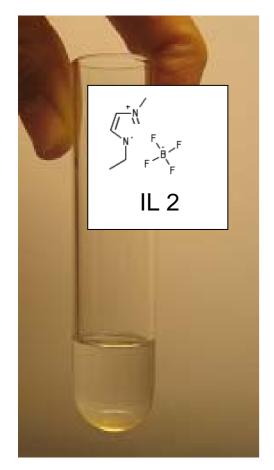
Auswahl des Grundöls

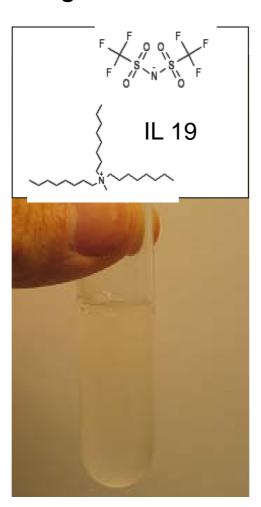
Hohe Bioabbaubarkeit Niedrigpreissegment


Hohe Standzeit (und Persistenz)
Hohe Temperaturbeständigkeit
Hochpreissegment für Spezialanforderungen

Löslichkeitssreening mit Silikonöl –

Exemplarische Darstellung unerwünschter 2-Phasensysteme


0,5 w/w % Ethyltributylphosphonium diethylphosphat nach mechanischem Rühren



Löslichkeitssreening mit Silikonöl –

Exemplarische Darstellung unerwünschter 2-Phasensysteme

Emulsion mit Phasentrennung

Emulsion

Homogenisatoren:

Ultraschallbad (90 Minuten) und Ultra Turrax (2 Minuten bei 45000 rpm)

IL: 5 % w/w

IL 2 1-Ethyl-3-methylimidazolium tetrafluoroborat

IL 19 Methyltrioctylammonium bis(trifluoromethylsulfonyl)imid

Löslichkeitssreening mit Silikonöl –

Herstellung stabiler Nanoemulsionen

- Nanoskalige Tröpfchengröße*)
- Enge Tröpfchengrößenverteilung verhindert Koaleszenz (Minimierung der freien Enthalpie durch Ostwald-Reifung).
- Langzeit-(meta)stabil durch Brownsche Molekularbewegung
- Transparente / opake kolloidale Lösung

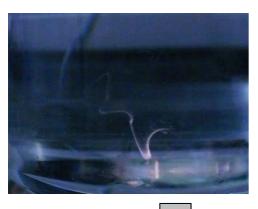
*) Morales et al. *Langmuir* **2003**, *19*(18), 7196-7200

Herstellung stabiler Nanoemulsionen: Hochdruckhomogenisation

- Laplacedruck steigt mit abnehmender Teilchengröße
 - → zunehmend hohe mechanische Arbeit
 - → Scherkräfte des Ultra Torrax nicht ausreichend
- HD-Expansionsdüse: 10fach höhere Scherkräfte möglich als bei Ultra Torrax

Hochdruckhomogenisator

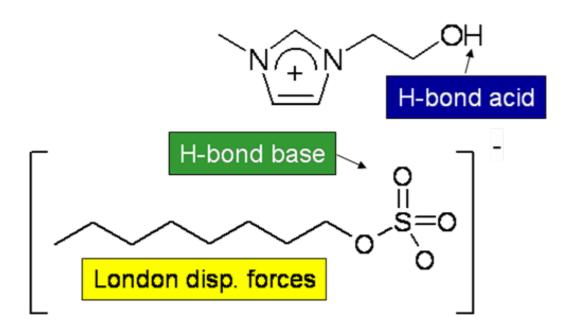
Omni Mixer 17220; DU PONT instruments Sorvall

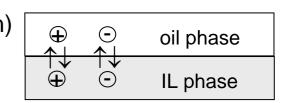

der Fa. AC Serendip

Löslichkeitssreening mit Silikonöl – Hochdruckhomogenisation zur Herstellung stabiler Nanoemulsionen

0,5 w/w % Ethyltributyl-phosphonium diethylphosphat

0,8 w/w %
Ethyltributylphosphonium
diethylphosphat und
1-Dezylimidazolium Bromid


11 Passagen bei **700 bar** für 120 Minuten in 4 Liter Silikonöl. Nach 60 Minuten Zugabe von 1-Dezyl-3-Methylimidazolium Bromid als Co-Tensid


Zukünftiges Löslichkeitssreening für unpolare Grundöle

Molekulare Wechselwirkungspotenziale der IL Ionen

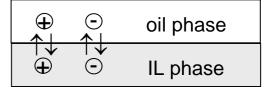
... zur Vorhersage: • γ_{ion, solvent} (Aktivitätskoeffizienten)

• K_i (Löslichkeiten)

Linear Free Energy Relationship (LFER)

The Abraham equation for processes in condensed phases

Solute property *SP*, in a given system


$$log SP = V.V + e.E + s.S + a.A + b.B + c$$

System constants - basic oils

- V London dispersive interactions
- e Polarizability interactions (electron pairs)
- s Dipole-type interactions
- a Hydrogen-bond basicity
- b Hydrogen-bond acidity

Solute descriptors - ILs

- V Molecular (McGowan) volume
- E Excess molar refraction
- S Ability to stabilize neighboring dipole
- A Effective hydrogen-bond acidity
- B Effective hydrogen-bond basicity

Free Energy Relationship for IL ions Quantum chemical calculation of IL ion descriptors

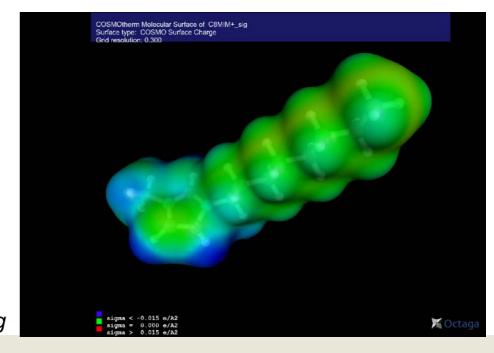
log SP = V.V + e.E + s.S + z.Z + a.A + b.B + c

Turbomole / COSMO RS

Descriptors of IL ions

V Molecular volume

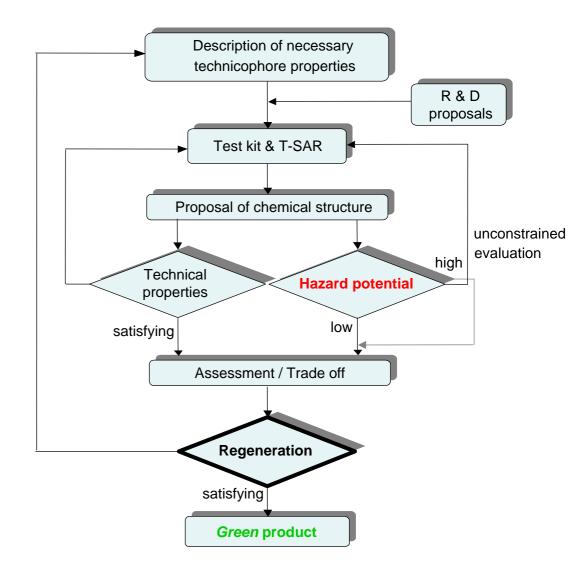
E Excess molar refraction


S Ability to stabilize neighboring dipole

Z Coulomb interactions

A Effective hydrogen-bond acidity

B Effective hydrogen-bond basicity


In Zusammenarbeit mit Prof. Ingo Krossing, Freiburg

Algorithmus für die Entwicklung umweltverträglicher Schmierstoffadditive

Regeneration am Beispiel von [BMPyr]BTA

Unbrauchbar gewordene, stichfeste IL

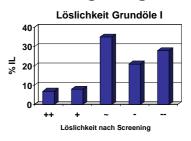
Regenerierte IL

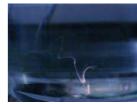
Thöming, Waterkamp (2008) In: Electrodeposition in Ionic Liquids, ed. Frank Endres, Andrew Abbott und Douglas MacFarlane, Wiley-VCH, in press

Chilyumova, Thoming (2008)

Desalination 224, 12-17

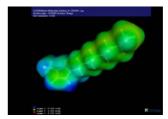
Fernandez, Waterkamp, Thöming (2008)


Desalination 224, 52-56.



Fazit

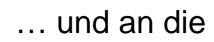
- IL als umweltverträgliche Schmierstoff-Additive potenziell geeignet
- Löslichkeiten in Ester- und Mineralölen gefunden

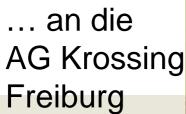


 Keine "echte Löslichkeit" in Silikonöl und Perfluoropolyether (PFPE)

Lösungsansätze

- Stabile Nanoemulsionen (Hochdruckhomogenisierung)
- Gezieltes Design auf Basis der Vorhersage von Abraham-Deskriptoren





Vielen Dank an... den AK-Ionische Flüssigkeiten

