

Entwicklung von Ionischen Flüssigkeiten höherer Eigensicherheit unter Verwendung einer flexiblen (öko-)toxikologischen Testbatterie

Stefan Stolte

Ziel: "Nachhaltiges Produktdesign"

Technisches Leistungsprofil

Strukturformel

Minimiertes Gefahrenpotenzial für Mensch und Umwelt

Wirtschaftlichkeit / Profitabilität

Jastorff et al. 2003 Green Chemistry 5, 136-142

Ziel: "Nachhaltiges Produktdesign"

Jastorff et al. 2003 Green Chemistry 5, 136-142

Was ist notwendig um das Gefahrenpotenzial abzuschätzen?

Expositionsabschätzung

- Verwendung
- Eintragsmenge
- Eintragshäufigkeit
- Räumliche Verteilung
- Eintragskompartiment
- Bioverfügbarkeit
- Bioakkumulation

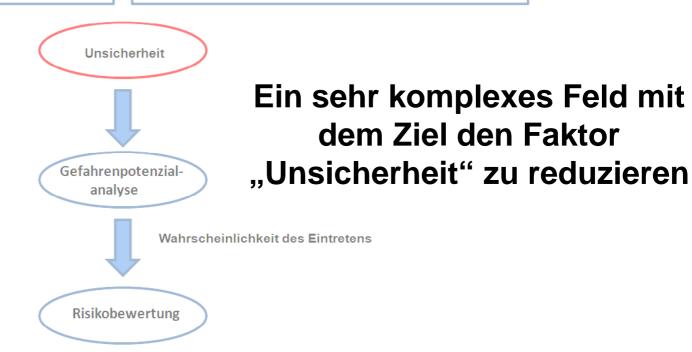
Gefährlichkeitsabschätzung

- Physikochemische Eigenschaften (pH-Wert, Wasserlöslichkeit, etc.)
- · abiotische und biotische Transformation
- Akute Toxizität
- Chronische Toxizität
- Einfluss auf Population, Biozönose und Ökosystem (Einzelspeziestests, Multispeziestest, Modellökosysteme)

Schätzungsweise 13 bis 20 Millionen Pflanzen- und Tierarten

Übertragbarkeit: Laborversuch / Freiland Tierversuch / Mensch

Zusammenwirken biotischer und abiotischer Faktoren

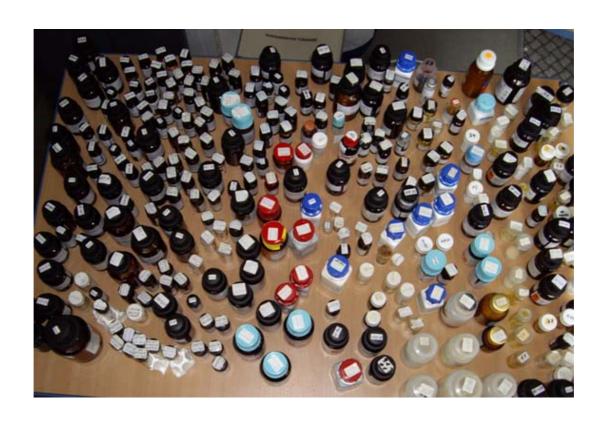


Expositionsabschätzung

- Verwendung
- Eintragsmenge
- Eintragshäufigkeit
- Räumliche Verteilung
- Eintragskompartiment
- Bioverfügbarkeit
- Bioakkumulation

Gefährlichkeitsabschätzung

- Physikochemische Eigenschaften (pH-Wert, Wasserlöslichkeit, etc.)
- abiotische und biotische Transformation
- Akute Toxizität
- Chronische Toxizität
- Einfluss auf Population, Biozönose und Ökosystem (Einzelspeziestests, Multispeziestest, Modellökosysteme)



Das "Nachhaltige Produktdesign" am Beispiel der Ionischen Flüssigkeiten

Theoretisch sind 10¹² Ionische Flüssigkeiten möglich

Problem:

Strukturvielfalt repräsentiert ein unkalkulierbares Risiko für Mensch und Umwelt

Unser Ansatz:

 systematische Auswahl der Substanzen für die (öko-)toxikologische Daten erhoben werden

Kopfgruppe

Seitenkette

Anion

$$R$$
 OH

$$R^{0}$$

$$R^{\sim}$$

Kopfgruppe

Seitenkette

Anion

$$N(CN)_2^{-1}$$

Kopfgruppe

Seitenkette

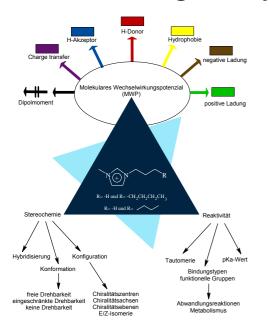
Anion

$$[PR_4]^+$$

$$[NR_4]^+$$

$$R$$
 R

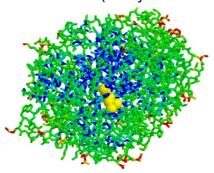
$$\left(\begin{array}{c} + \\ \end{array}\right)_{N-R}$$



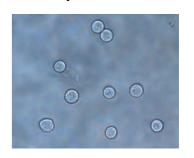
Unser Ansatz:

- systematische Auswahl der Substanzen für die (öko-)toxikologische Daten erhoben werden
- testen in einer flexiblen (öko-)toxikologischen Testbatterie und Etablierung einer Analytik

Struktur-Wirkungs-Analyse

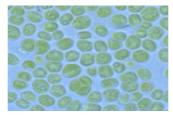

Wachstumshemmtest

mit Lemna minor ISO TC 147/SC 5 N draft



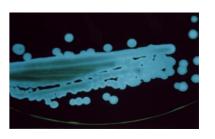
Enzymhemmtest

(Acetylcholinesterase)


Zellvitalitätstest WST-1-Assay mit IPC-81 - Zellen

Die Testbatterie

Reproduktionshemmtest


limnische Grünalge (Scenedesmus vacuolatus)

Osnabrücker Umweltgespräch

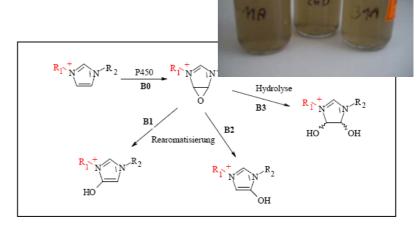
Lumineszenzhemmtest

marines Bakterium (Vibrio fischeri), DIN 38412 L 341

11.08.2008

Die Testbatterie

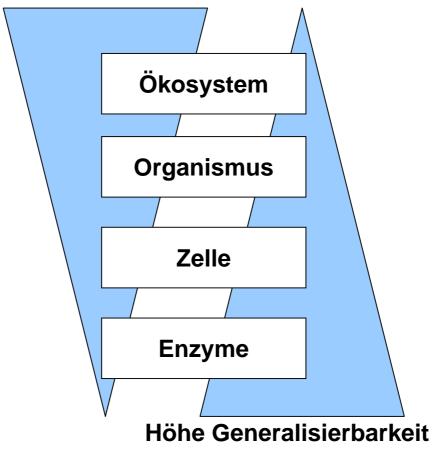
Wachstumshemmtest
Triticum aestivum und Lepidium
sativum



AquaHab

Reproduktionshemmtest Folsomia candida

Tests zur biologischen Abbaubarkeit und zur biologischen Transformation



Hohe Übertragbarkeit

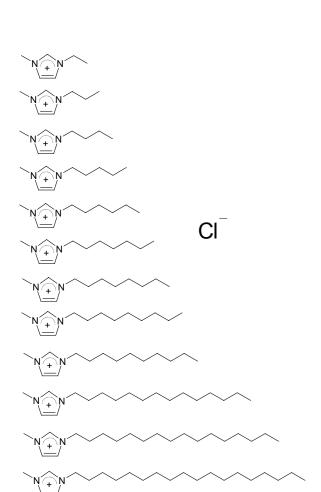
(Hohe Relevanz für ökologische Betrachtungen)

(Hohe Relevanz für molekulare Betrachtungen)

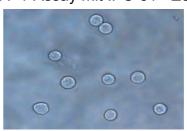
Analytik

- Identitätsbestimmung
- Reinheitskontrolle
- Bestimmung von Ist-Konzentrationen
- Adsorption an biologische Matrizes
- Interaktion mit Membranen
- Bestimmung der biologischen Abbaubarkeit/Metabolismus
- Q-SAR Toxizitäts-Korrelationen

HPLC-(ESI)MS

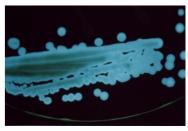

Unser Ansatz:

- systematische Auswahl der Substanzen für die (öko-)toxikologische Daten erhoben werden
- testen in einer flexiblen (öko-)toxikologischen Testbatterie und Etablierung einer Analytik
- Identifizierung von einzelnen Strukturelementen, die (öko-)toxisch wirken und die die biologische Abbaubarkeit beeinflussen



Einfluss der Seitenkette

Zellvitalitätstest WST-1-Assay mit IPC-81 - Zellen

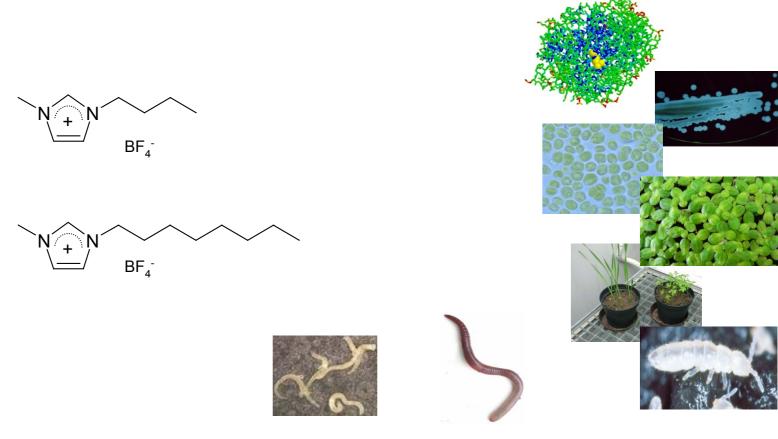

Ranke et al. 2004 Ecotoxicol Environ Saf 58 (3) 396-404 Stolte et al. 2007 Green Chem 9 (8) 760-767

(Lemna minor)

Wasserlinse

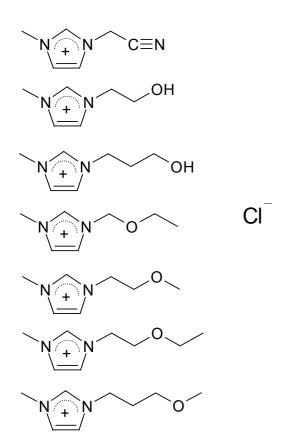
Marines Bakterium (Vibrio fischeri)

Stolte et al. 2007 Green Chem 9 (11) 1170-1179

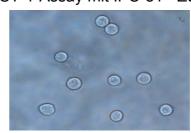


Je länger die Alkylseitenkette, desto toxischer die Substanz

Einfluss der Seitenkette


Enchytraeus albidus Dendroba

Dendrobaena Veneta

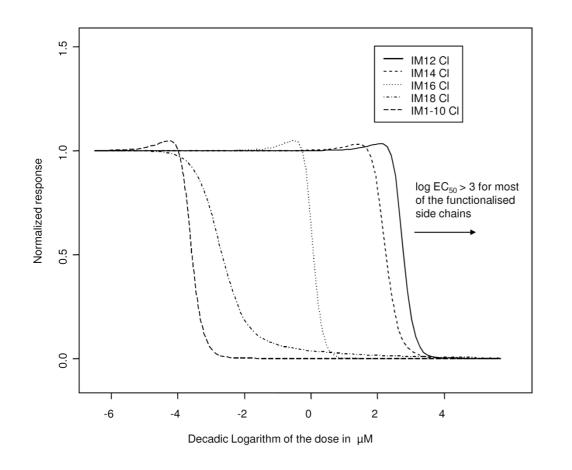


Einfluss der Seitenkette

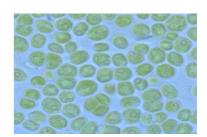
Zellvitalitätstest WST-1-Assay mit IPC-81 - Zellen

Stolte et al. 2007 Green Chem 9 (8) 760-767

Stolte et al. 2007 Green Chem 9 (11) 1170-1179



Je polarer die Seitenkette, desto weniger toxisch die Substanz

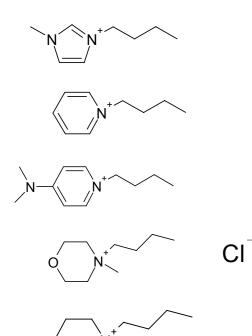


Einfluss der Seitenkette

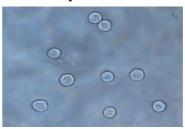
Limnische Grünalge (Scenedesmus vacuolatus)

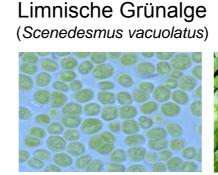
$$EC_{50} = 0.3 \text{ nM}$$

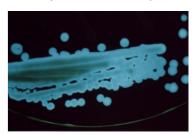
 $EC_{50} > 1 \text{ mM}$



Verschiebung der Toxizität um 6-7 Größenordnungen!




Einfluss des Kopfgruppe


Ranke et al. 2004 Ecotoxicol Environ Saf 58 (3) 396-404 Stolte et al. 2007 Green Chem 9 (8) 760-767

(Lemna minor)

Wasserlinse

Marines Bakterium (Vibrio fischeri)

Stolte et al. 2007 Green Chem 9 (11) 1170-1179

Die Kopfgruppe trägt weniger zur Toxizität des Kations bei

Die Hydrophobie des Kations

 quantitative Bestimmung der Hydrophobie über einen HPLC bestimmten Parameter (log k₀)

Ranke et al. 2007 Ecotoxicol Environ Saf 67 (3) 430-438

Die Hydrophobie des Kations

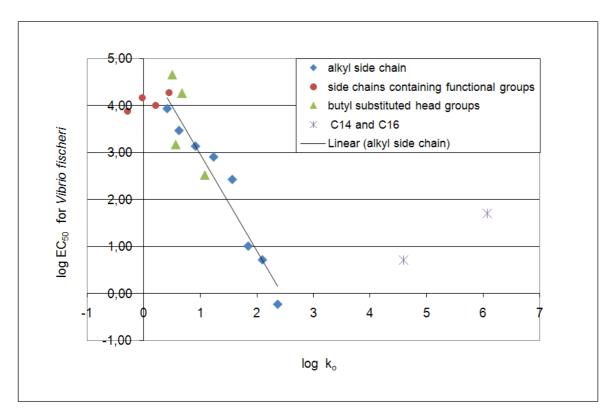
 quantitative Bestimmung der Hydrophobie über einen HPLC bestimmten Parameter (log k₀)

Ranke et al. 2007 Ecotoxicol Environ Saf 67 (3) 430-438

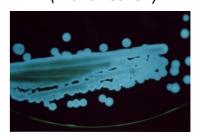
der log k₀ wird maßgeblich von der Seitenkette bestimmt;
 die Kopfgruppe ist weniger ausschlaggebend

Die Hydrophobie des Kations

 quantitative Bestimmung der Hydrophobie über einen HPLC bestimmten Parameter (log k₀)

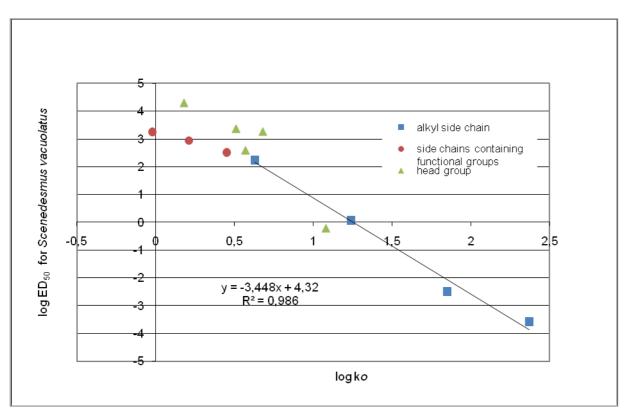

Ranke et al. 2007 Ecotoxicol Environ Saf 67 (3) 430-438

der log k₀ wird maßgeblich von der Seitenkette bestimmt;
 die Kopfgruppe ist weniger ausschlaggebend

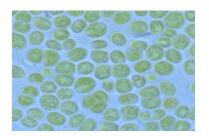


Die Abhängigkeit der Toxizität von der Hydrophobie

Marines Bakterium (Vibrio fischeri)



Stolte et al. 2007 Green Chem 9 (11) 1170-1179



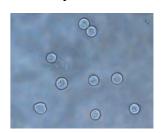
Die Abhängigkeit der Toxizität von der Hydrophobie

Limnische Grünalge (Scenedesmus vacuolatus)

Stolte et al. 2007 Green Chem 9 (11) 1170-1179

Hypothese:

Störung des Membransystems und höhere interne Effektkonzentrationen


Einfluss des Anions

No.	Structure	Name	No.	Structure	Name
1	BF ₄ -	Tetrafluoroborate	13	SCN-	Thiocyanate
2	0 -0 B	Bis- [1,2-benzene- diolato (2-)] borate (BBDB)	14	HSO ₄ -	Hydrogen sulfate
			15	CH ₃ OSO ₃ -	Methyl sulfate
			16	C ₂ H ₅ OSO ₃ -	Ethyl sulfate
3	0 0 0 0 0	Bis- [oxalato(2-)]-borate (BOB)	17	$C_8H_{17}OSO_3^-$	Octyl sulfate
			18	H ₃ CO(CH ₂) ₂ O-(CH ₂) ₂ OSO ₃ -	2-(2-methoxyethoxy)- ethylsulfate
			19	H ₃ C-(O-CH ₂ -CH ₂) _n - OSO ₃ -	Methyl-poly(oxy-1,2-ethanediyl) sulfate
			20	CH ₃ SO ₃ -	Methanesulfonate
4	(CF ₃ SO ₂) ₃ C ⁻	Tris(trifluoromethyl- sulfonyl)methide	21	CF ₃ SO ₃ -	Trifluoromethanesulfonate
5	(CN) ₂ N- Dicyanamide			Tosylate	
6	N(CF ₃) ₂ -	Bis(trifluoro-methyl)imide	22	-SO ₃	(Tos)
7	N(SO ₂ CF ₃) ₂ -	Bis(trifluoromethyl- sulfonyl)imide	23	F-	Fluoride
8	PF ₆ -	Hexafluorophosphate	24	Cl-	Chloride
9	$(C_2F_5)_3PF_3^-$	Tris(pentafluoroethyl)- trifluorophosphate	25	Br	Bromide
10	$(C_3F_7)_3PF_3$	Tris(heptafluoropropyl)- trifluorophosphate	26	I-	Iodide
11	$[(C_2F_5)_2P(O)O$	Bis(pentafluoroethyl)- phosphinate	27	Co(CO) ₄ -	Cobalttetracarbonyl
12	SbF ₆ -	Hexafluoro- antimonate			

Stolte et al. 2006 Green Chem 8 (7) 621-629

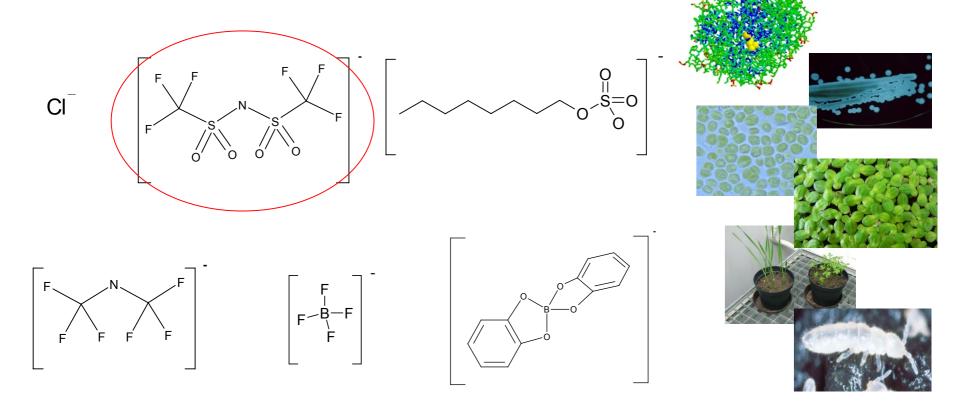
Zellvitalitätstest

WST-1-Assay mit IPC-81 - Zellen

hochfluorierte und / oder hydrolyse-empfindliche Strukturen beeinflussen die Zytotoxizität

11.08.2008

Osnabrücker Umweltgespräch



Verschiebung der Toxizität um 3 Größenordnungen!

Einfluss des Anions

Matzke et al. 2007 **9** (11) 1198-1207 *Green Chem*

 Entwicklung und Wachstum des Weizens gestört durch das (CF₃SO₂)₂N Anion: Pseudo-Sukkulenz und Verlust des Gravitropismus

• die untersuchten Anionen tragen (zum Teil deutlich) zur Toxizität von Ionischen Flüssigkeiten bei

- die untersuchten Anionen tragen (zum Teil deutlich) zur Toxizität von Ionischen Flüssigkeiten bei
- der Effekt des Anions war in der Regel nicht so ausgeprägt wie der "Seitenketten-Effekt"

- die untersuchten Anionen tragen (zum Teil deutlich) zur Toxizität von Ionischen Flüssigkeiten bei
- der Effekt des Anions war in der Regel nicht so ausgeprägt wie der "Seitenketten-Effekt"
- Zusammenhang zwischen hochfluorierten und / oder hydrolyseempfindlichen Strukturen und Toxizität konnte nicht für alle Substanzen und Testsysteme bestätigt werden

- die untersuchten Anionen tragen (zum Teil deutlich) zur Toxizität von Ionischen Flüssigkeiten bei
- der Effekt des Anions war in der Regel nicht so ausgeprägt wie der "Seitenketten-Effekt"
- Zusammenhang zwischen hochfluorierten und / oder hydrolyseempfindlichen Strukturen und Toxizität konnte nicht für alle Substanzen und Testsysteme bestätigt werden
- oft große Unterschiede in den verschiedenen Testsystemen

- die untersuchten Anionen tragen (zum Teil deutlich) zur Toxizität von Ionischen Flüssigkeiten bei
- der Effekt des Anions war in der Regel nicht so ausgeprägt wie der "Seitenketten-Effekt"
- Zusammenhang zwischen hochfluorierten und / oder hydrolyseempfindlichen Strukturen und Toxizität konnte nicht für alle Substanzen und Testsysteme bestätigt werden
- aber oft große Unterschiede in den verschiedenen Testsystemen

Wirkmechanismen

Mischungstoxizität

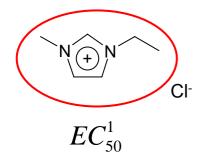
Ionische Flüssigkeiten sind Kombinationen aus zwei unterschiedlichen chemischen Spezies

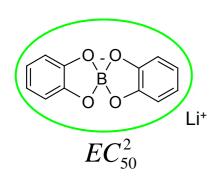
Konzept der Konzentrations-Additivität:

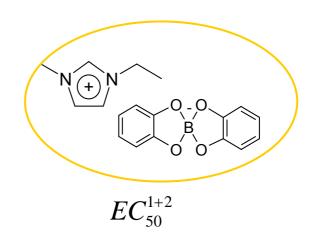
- robustes Vorhersage-Konzept aus der Pharmakologie zur Untersuchung von Kombinationswirkungen
- Berechnung von EC₅₀-Werten

$$EC_{X(Mix)} = \left(\sum_{i=1}^{n} \frac{p_i}{EC_X(S_i)}\right)^{-1} \qquad \text{mit} \qquad p_i = \frac{C_{S_i}}{C_{(Mix)}}$$

Für ein binäres Gemisch in dem beide Komponenten in gleichen Konzentrationen vorliegen ergibt sich:


$$EC_{50}^{1+2} = \frac{EC_{50}^{1} * EC_{50}^{2}}{EC_{50}^{1} + EC_{50}^{2}}$$





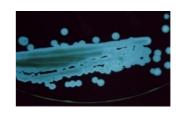
Berechnung:

$$EC_{50}^{1+2} = \frac{EC_{50}^{1} * EC_{50}^{2}}{EC_{50}^{1} + EC_{50}^{2}}$$



Beispiele:

	EC ₅₀ values/μM		
	C_2MIM	C ₄ MIM	
BBDB	10 (13)		
BOB	860 (890)		
$(CN)_2N^-$	` ′	1400 (2900)	
SbF ₆		180 (190)	
HSO ₄		1900 (2500)	
C ₈ H ₁₇ OSO ₃		1700 (1600)	
Tos		1900 (3000)	


 das Konzept der Konzentrations-Additivität sind mögliche Ausgangspunkte für die prospektive Abschätzung

Können Experimente nicht ersetzen

Kombinationswirkungen

$$EC_{50} > 20~000~\mu M$$

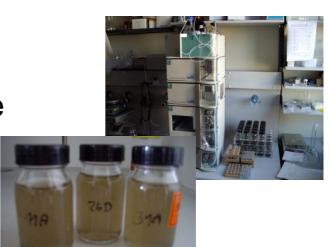
$$EC_{50} = 2500 \mu M$$

$$\begin{array}{c|c}
 & F & F & F \\
\hline
 & F & N & S & F \\
\hline
 & O & O & O & O
\end{array}$$

$$EC_{50} = 300 \mu M$$
 (Gemessen)

$$EC_{50} = 5000 \mu M$$
 (Berechnet)

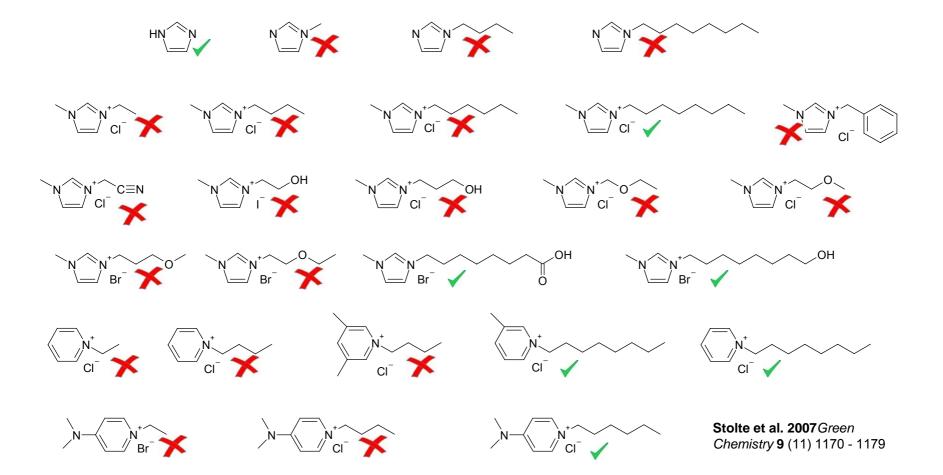
- Ionenpaarbildung, Bioverfügbarkeit
- Kombinationswirkungen schränken Prognose der Toxizität ein


Die biologische Abbaubarkeit von Ionischen Flüssigkeiten

Bestimmung des Primärabbaus

- modifizierter OECD Test 301
- Belebtschlamm aus der Kläranlage
- Inkubationszeit von 31 Tagen

Testsubstanzen



X ≈ 0% Primärabbau

besonders hydrophobe Kationen sind biologisch abbaubar

Zielkonflikt zwischen der biologischen Abbaubarkeit und einer minimierten Toxizität!

Zielkonflikt ist nicht zwingend...

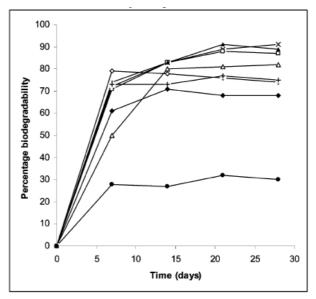


Fig. 1 Biodegradation of 1a (\square), 1b (\triangle), 2a (\diamondsuit) 2b (+), 2c (\triangle), 2d (\spadesuit), 3 (\blacksquare) and sodium dodecyl sulfate (reference compound) (\times) in the CO₂ Headspace test.

Harjani et al. Green Chem., 2008, 10, 436-438

Ionische Flüssigkeiten aus Biomaterialien

Fukaya et al. Green Chem., 2007, 9, 1155-1157 | 1157

und viele Kopfgruppen sind noch nicht untersucht

Identifizierte Transformationsprodukte

retention time in min.	m/z+	intensity			m/z+
8.9	195	4*10 ⁵	N N		
13.5 / 14.4	211	3*10 ⁵ / 2*10 ⁵	л. Т. М. — ОН	OH OH	
12.2 / 12.7	209	1*106 / 2*106	N. W.		211
10.0 - 12.5	225	2*104 - 6*104	OH OH	0H + 9	209
19.5	183	1*10 ⁵	М- ОН	N. W.	225
16.2	197	3*10 ⁵	OH OH		
26.5	155	0.5*105	ОН ОН		
24.2	169	4*10 ⁶	и Тиз- Он	Stolte et al. 2007 <i>Greenistry</i> 9 (11) 11	
26.7	141	1*105	N Nº FO		

- identifizierte Produkte tendenziell mit einem geringeren Gefahrenpotenzial
- allerdings ist die Bildung von reaktiven Spezies denkbar

Beitrag zur Gefahrenpotenzialanalyse

- Beitrag zur Gefahrenpotenzialanalyse
- Identifizierung von Strukturelementen, die die Toxizität und biologische Abbaubarkeit beeinflussen

- Beitrag zur Gefahrenpotenzialanalyse
- Identifizierung von Strukturelementen, die die Toxizität und biologische Abbaubarkeit beeinflussen
- Möglichkeit der Prognose von Toxizitäten

- Beitrag zur Gefahrenpotenzialanalyse
- Identifizierung von Strukturelementen, die die Toxizität und biologische Abbaubarkeit beeinflussen
- Möglichkeit der Prognose von Toxizitäten
- Hinweise zum Wirkmechanismus / Wirkort

Erweiterung der Testbatterie um

- wirkmechanismenbasierte Testsysteme
- weitere Screening-Tests zur Erfassung von toxikologisch besonders relevanten Endpunkten

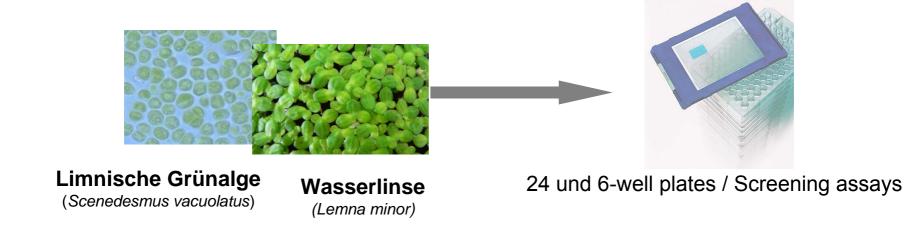
Erweiterung der Testbatterie um

- wirkmechanismenbasierte Testsysteme
- weitere Screening-Tests zur Erfassung von toxikologisch besonders relevanten Endpunkten

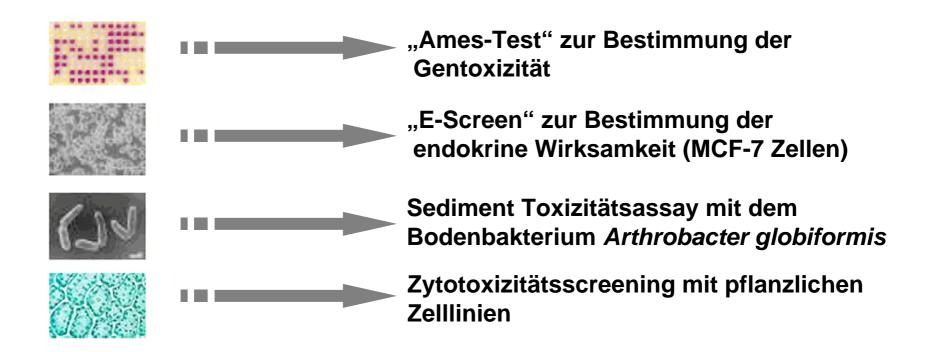
Optimierung bestehender Testsysteme, um zukünftig das Screening großer Substanzdatenbanken zu ermöglichen

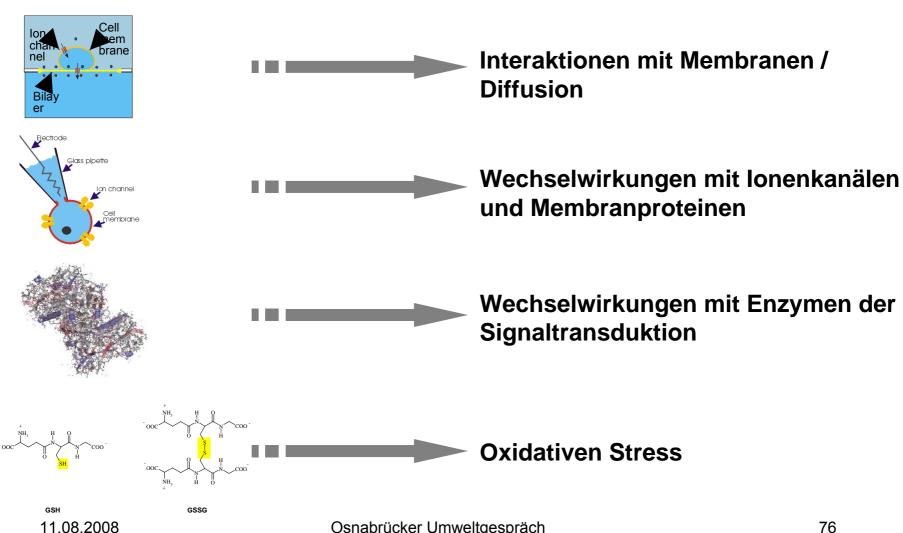
Erweiterung der Testbatterie um

- wirkmechanismenbasierte Testsysteme
- weitere Screening-Tests zur Erfassung von toxikologisch besonders relevanten Endpunkten


Optimierung bestehender Testsysteme, um zukünftig das Screening großer Substanzdatenbanken zu ermöglichen

Testung von ausgewählten Ionischen Flüssigkeiten in der erweiterten und optimierten Testbatterie


Optimierung bestehender Testsysteme


Neue Testsysteme und Endpunkte

Untersuchungen zum Wirkmechanismus

Entwicklung von Ionischen Flüssigkeiten höherer Eigensicherheit unter Verwendung einer flexiblen (öko-)toxikologischen Testbatterie

- Verbesserung der Datenlage für Ionische Flüssigkeiten
- Verbesserung der Testbatterie:
 REACH "intelligente Teststrategien"
- prospektive Entwicklung neuer Industriechemikalien

Arbeitskreis Ionische Flüssigkeiten

Vielen Dank für Ihre Aufmerksamkeit!