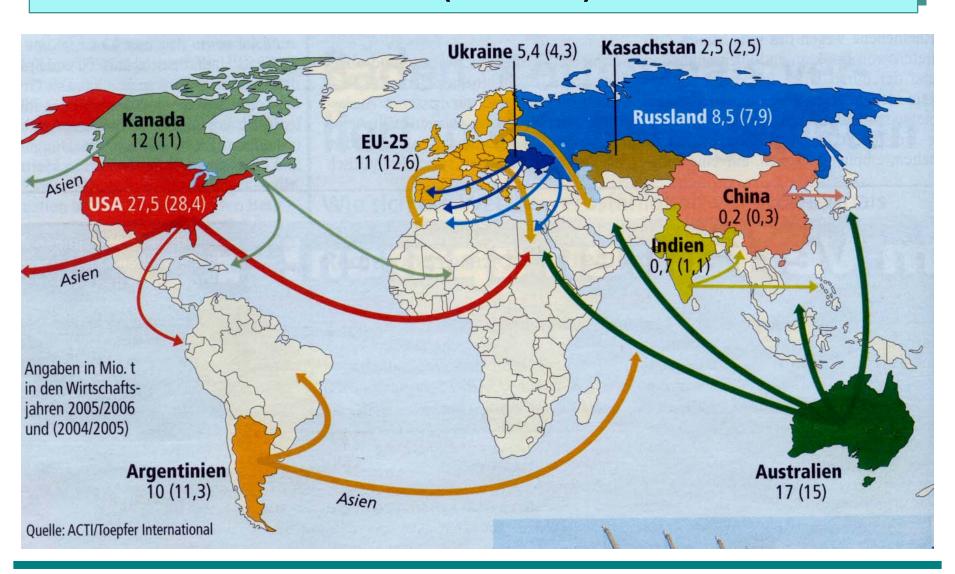
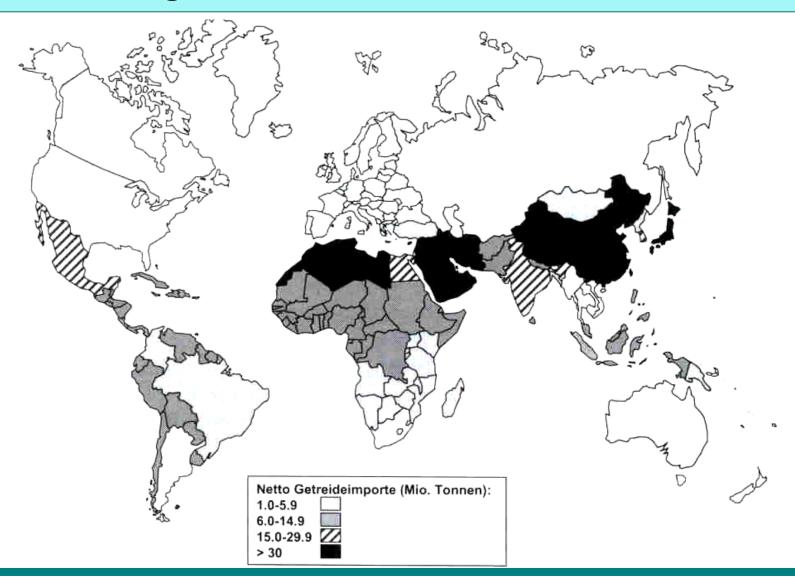
Übersicht über Lehrinhalte zum Modul: Regionale, ökologische Erzeugung und Vermarktung landwirtschaftlicher Produkte

- 1. Ausgangssituation für regionale Erzeugung und Vermarktung
- 2. Erfassung und Quantifizierung von Nachhaltigkeitswirkungen
- 3. Die Ökobilanzierung von Produkten und Produktionsverfahren
- 4. Energetische Betrachtung regionaler und globaler Strategien für die Erzeugung von Nahrungsmitteln

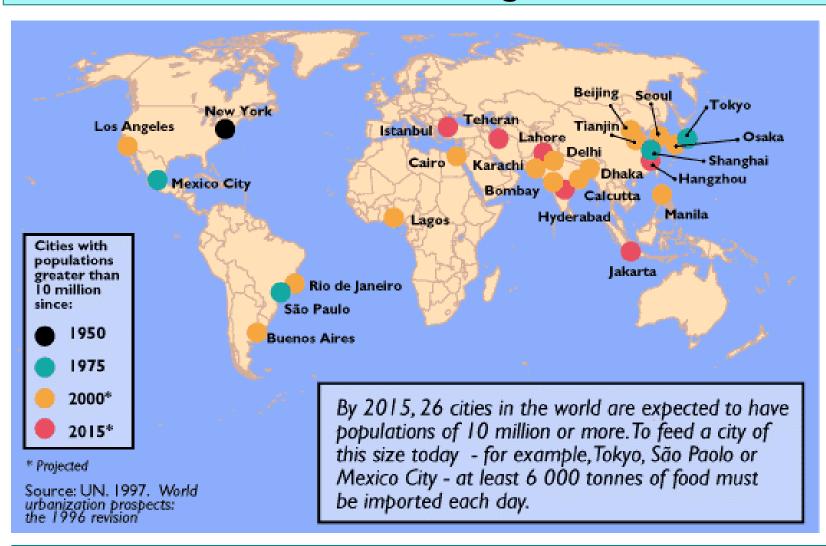
5. Naturschutz auf ackerbaulich genutzten Flächen

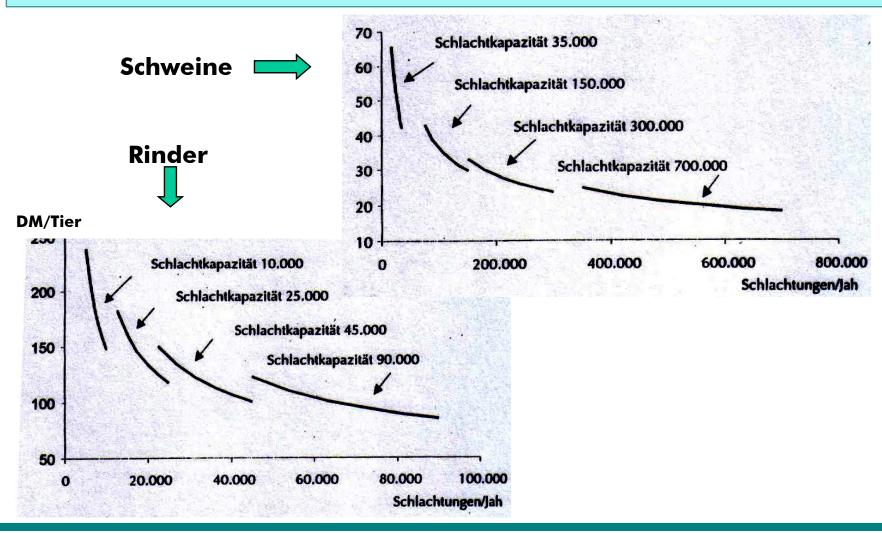

Vorlesungsunterlagen unter:

www.dbu.de/wahmhoff


Der aktuelle Weltmarkt für Weizen (Mio. t)

						million	tons
		04/05	05/06	06/07	07/08	08/09 forecast	
					est		
						24.04	30.05
F	Production	628	620	593	604	645	650
WHEAT	Trade	110	110	110	105	110	109
×	Consumption	616	624	611	612	630	632
	Stocks	141	137	120	112	128	131
	year/year change	+12	-4	-17	-8		+19
	5 major exporters**	60	59	39	27	37	38


Die wichtigsten Exporteure von Weizen im Jahre 2005 (in Mio. t)


Netto-Getreideimporte in Länder und Regionen, geschätzt für das Jahr 2025

Nahrungsmittelversorgung der urbanen Bevölkerung

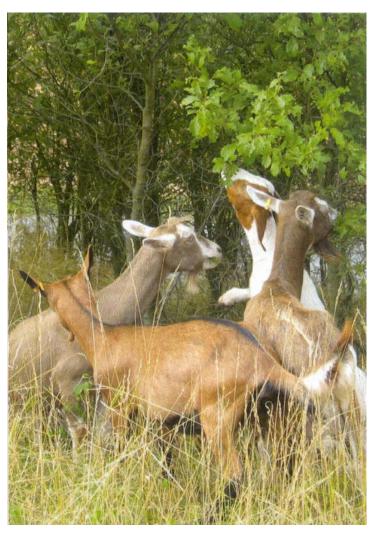
Betriebsgrößeneinfluss auf die Schlachtkosten (DM/Tier)

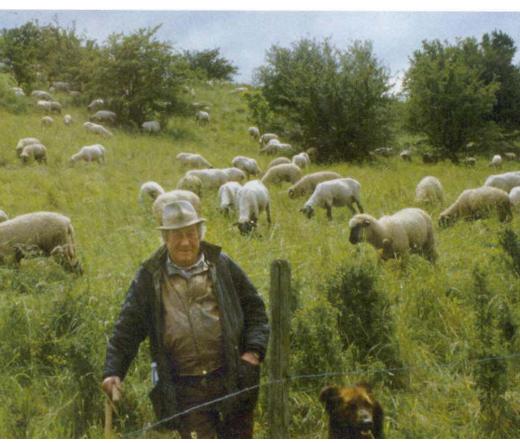
Übergeordnete Ziele der Regionalentwicklung

- Stärkung der Region durch Entwicklung von Konzepten, die die besonderen Stärken und Schwächen einer Region als Ausgangspunkt für die zukünftige Entwicklung nehmen.
- Vermehrte und effizientere Nutzung des regionalen Potentials (vorhandene Naturausstattung, Wirtschaftspotentiale z. B. bestehende Unternehmen, Rohstoffquellen, Arbeitskräfte) durch Entwicklung von Konzepten für Kooperationsformen zwischen Wirtschaft, Kommunen und Bevölkerung.
- Förderung regionaler Stoffkreisläufe durch Bevorzugen der regionalen Leistungen, durch Produktion vor Ort und Vernetzung von Unternehmen in der Region.

Handlungsfelder der Regionalentwicklung

- Gewerbe und Produktion
- Wohnungs- und Siedlungsbau
- Verkehr
- Freizeit und Tourismus
- Land- und Forstwirtschaft

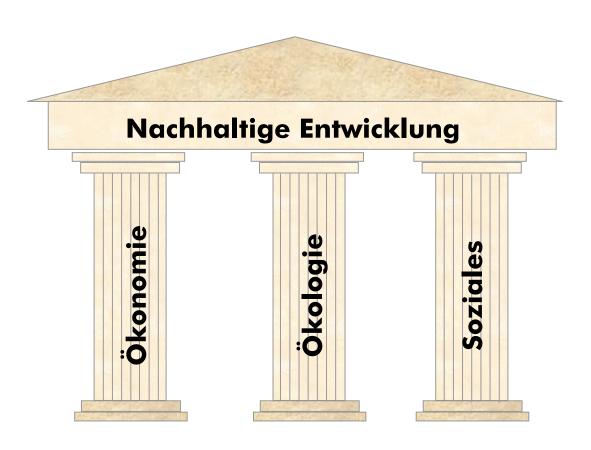

Multifunktionalität der Landnutzung



Gründe für regionale Lebensmittelerzeugung

- Schaffen von Marktnischen für landwirtschaftliche Produkte, um der Konkurrenz des Weltmarktes zu entgehen.
- Vertrauensbildung durch enge Beziehung zwischen Produzenten und Konsumenten
- Erhalt einer regionaltypischen Kulturlandschaft
- Landwirtschaft und Naturschutz in Einklang bringen
- Beiträge zur Nachhaltigkeit im Sinne der lokalen Umsetzung der Agenda 21

Landschaftspflege durch Beweidung


Fotos: STIFTUNG NATUR UND UMWELT RHEINLAND-PFALZ

Was heißt "Nachhaltige Entwicklung"?

Von "Nachhaltiger Entwicklung" einer Volkswirtschaft, einer Region oder eines Sektors wie z. B. der Landwirtschaft spricht man, wenn dauerhaft

- ökonomisch effizient gewirtschaftet und die Wettbewerbsfähigkeit gesichert bzw. verbessert wird;
- die Lebens- und Arbeitsbedingungen sozial akzeptabel sind und Umverteilung mit Augenmaß betrieben wird;
- Produktions-, Distributions- und Konsumprozesse umweltfreundlich gestaltet werden und somit das Naturkapital in seinem Leistungspotenzial nicht beeinträchtigt wird.

Säulen der Nachhaltigkeit

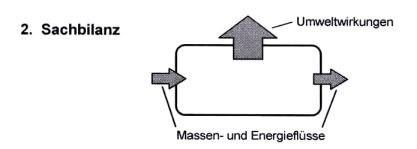
Komponenten einer nachhaltigen Landwirtschaft

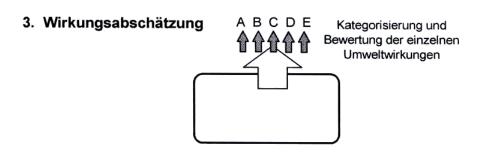
- Gewährleistung der Nahrungsmittelversorgung und der Nahrungsmittelqualität
- dauerhafter Erhalt der Produktionsgrundlagen
- Minimierung der Umweltbelastungen
- Erhalt der biologischen Vielfalt
- Sicherstellung der ökonomischen Existenzfähigkeit der landwirtschaftlichen Betriebe
- Berücksichtigung intergenerationeller Gerechtigkeit
- Verfolgen einer nachhaltigen Entwicklung im globalen Maßstab

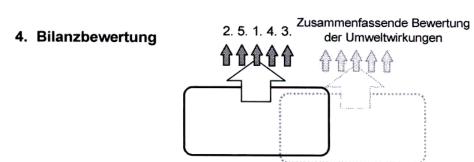
Instrumente der Umwelt- und Nachhaltigkeitsbewertung

Bewertungs- instrument	Produkt- linienanalyse	Produkt- Ökobilanz	Ökoaudit	Umw.verträg- lickeitsprüf.	Techn.folg abschätzung	
Bezug auf Untersuchung von	Produkt	Produkt	Prod stätte	Technische Anlagen	Technik/ Technologie	
Einzelwirkungen z.B. aus Herstellungs- prozessen	×	х		×	x	
Gesamtwirkung (alle Prozesse ent- lang des Produkt- lebensweges)	×	х		×	x	
Ökologische Aspekte	×	×		x	x	
Risiko	×	x			×	
Soziale Aspekte	×	x			×	
Kommunikation, Management	* * 1 *		х			

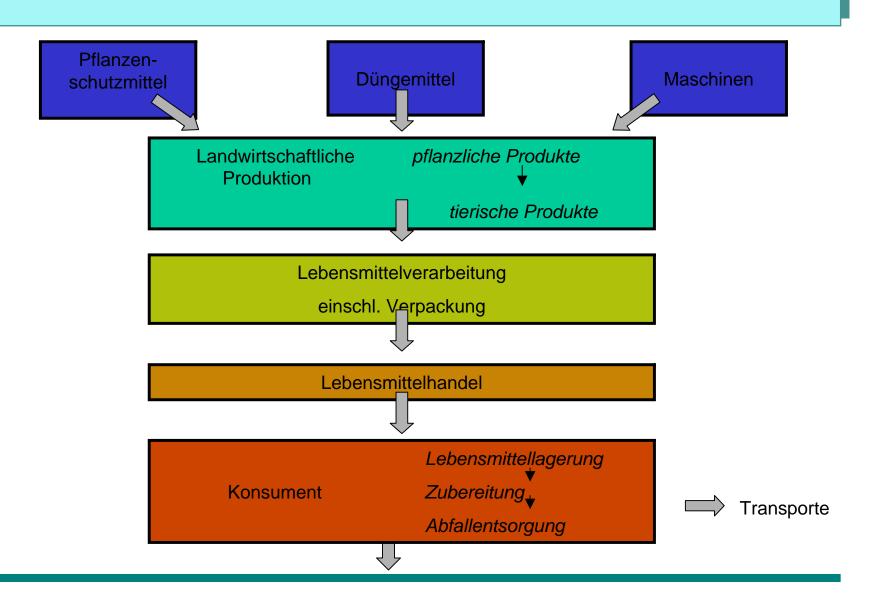
Ökobilanz: Definition und Kriterien


Eine Ökobilanz ist ein möglichst umfassender Vergleich der Umweltauswirkungen zweier oder mehrerer unterschiedlicher Produkte, Produktgruppen, Systeme, Verfahren oder Verhaltensweisen.


Kriterien:


- Wissenschaftlichkeit und Objektivität (bzw. Neutralität)
- Nachvollziehbarkeit und Transparenz
- Machbarkeit

Struktur der Ökobilanz (nach ISO 14000 ff)



Bilanzrahmen für die Nachhaltigkeitsbewertung von Lebensmitteln

Umweltwirkungsbereiche (Wirkungskategorien)

- Ressourcenverbrauch
- Naturraumbeanspruchung
- Treibhauseffekt
- Ozonabbau
- Eutrophierung
- Versauerung
- Ökotoxizität
- Humantoxizität
- Lärmbelastung
- Sommersmog

Indikatorgruppen zur Bewertung pflanzenbaulicher Aktivitäten hinsichtlich ihrer Umweltwirkungen (ökosystemarer Ansatz)

Ressourcenverbrauch/ kritisc

kritischer Verbrauch

-beanspruchung

Systemzustände/ kritische

-funktionen Zustände/Funktionen

(critical states/functions)

Immissionen kritische Einträge

(critical loads)

Emissionen kritische Austräge

(critical losses)

Indikatoren zur Bewertung pflanzenbaulicher Aktivitäten Ressourcenverbrauch/-beanspruchung

Indikatorgruppe	Indikator	Einheit			
Energienutzung	genutzte Energie je Produkteinheit	MJ/GE 1)			
Rohstoffver- brauch	Verbrauch P ₂ O ₅ , K ₂ O und CaO je Produkteinheit ²⁾	kg/GE			
Flächenbean- spruchung	Fläche je Produkteinheit	ha/GE			
1) MJ: Megajoule, GE: Getreideeinheit 2) soweit direkt fossilen Ursprungs					

Nachhaltigkeitswirkungen der Pflanzenproduktion auf der Ebene des Schlages

Ökonomie

Deckungsbeitrag

Ressourcenverbrauch/-beanspruchung

- Energienutzung
- Rohstoffverbrauch

- Flächenbeanspruchung
- Systemzustände/-funktionen
- Bodenverdichtung
- P₂O₅-, K₂O-, MgO-Gehalte
- bodenbiologische Funktionen

- pH-Wert
- Humussaldo
- Artenvielfalt

Immissionen

• Einträge Cd Pb Zn Cr Cu Ni

Emissionen

- NO₃-Austrag ins Grundwasser
- PSM-Austrag ins Grundwasser
- PSM-Austrag in Nachbarökosysteme
- N₂O-Entbindung in die Atmosphäre
- NH₃-Entbindung in die Atmosphäre

- PSM-Rückstände im Erntegut
- Toxine im Erntegut
- erosiver Bodenaustrag
- erosiver Nährstoffaustrag (P₂O₅, N)

Nachhaltigkeitswirkungen des Brotbackens

Ökonomische/Soziale Wirkungen

Gewinn

- Einkommensverteilung
- Unfallgefährdung

Ressourcenverbrauch/-beanspruchung

Energienutzung

Flächenbeanspruchung

Rohstoffverbrauch

Systemzustände/-funktionen

Immissionen

Emissionen

- Treibhauseffekt (CO₂, N₂O, CH₄, Wasserdampf)
- Stratosphärischer Ozonabbau (N₂O)
- Versauerung (SO₂, NO_x, NH₃)
- Ökotoxizität (luft- und abwassergetragene Schadstoffe)

- Humantoxizität (luftgetragen: CO, SO₂, NO_x, NH₃, HCL, Dioxine u.a., produktgetragen: PSM-Rückstände, Mykotoxine im Brot)
- Lärm

Schlüsselindikator Energienutzung je Produkteinheit beim Backen von Brot

Ökonomische/Soziale Wirkungen

Gewinn

- Einkommensverteilung
- Unfallgefährdung

Ressourcenverbrauch/-beanspruchung

- Energienutzung
- Rohstoffverbrauch

Flächenbeanspruchung

Mykotoxine im Brot)

Systemzustände/-funktionen

Immissionen

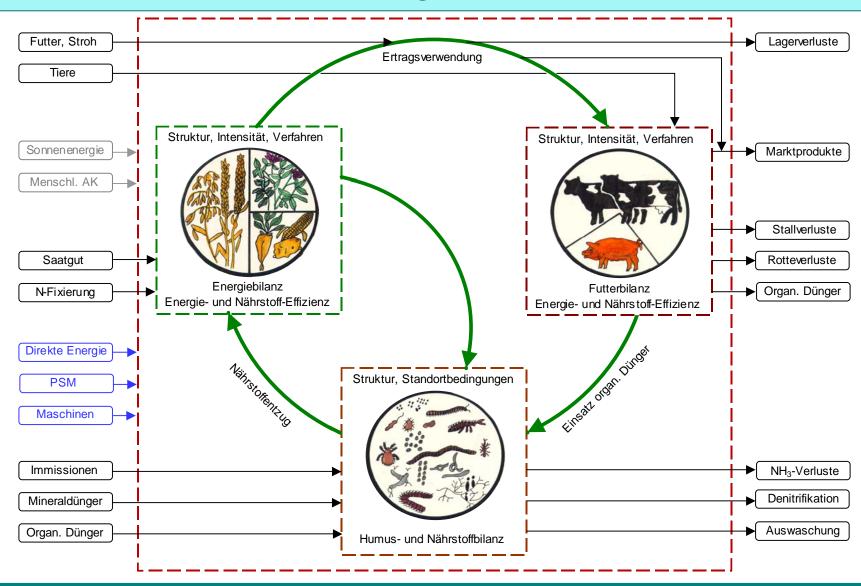
Emissionen

- Treibhauseffekt (CO₂, N₂O, CH₄, Wasserdampf)
- Stratosphärischer Ozonabbau (N₂O)
- Versauerung (SO₂, NO_x, NH₃)
- Ökotoxizität (luft- und abwassergetragene Schadstoffe)

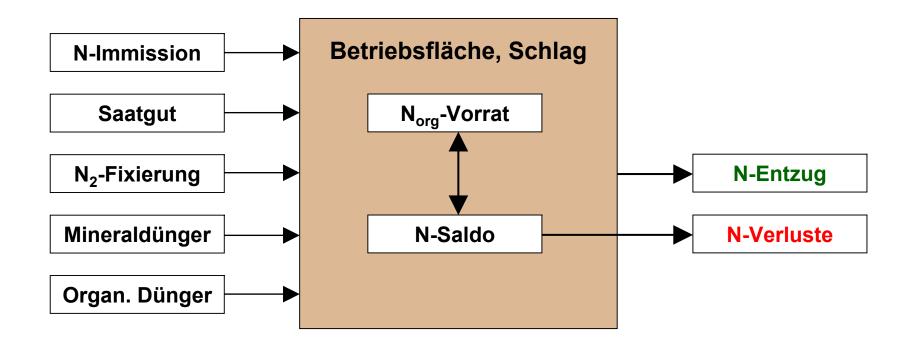
- Humantoxizität (luftgetragen: CO, SO₂, NO_x, NH₃, HCL, Dioxine u.a., produktgetragen: PSM-Rückstände,
- Lärm

Nachhaltigkeitsbewertungssystem REPRO

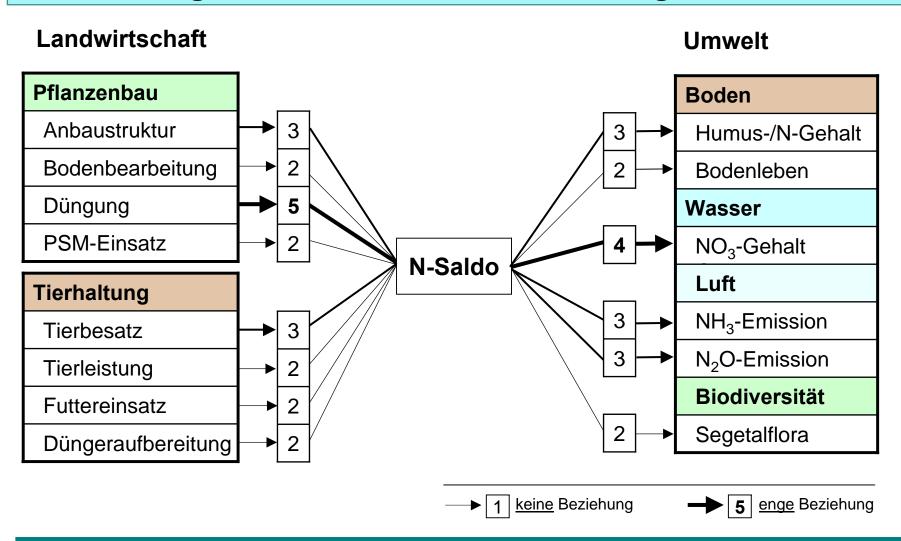
Ziel und Ansatz:


Nachhaltigkeit des Betriebes auf der Basis der Analyse der Stoff- und Energieflüsse und ökonomischer Berechnungen im untersuchten landwirtschaftlichen System. Komplette Erfassung aller Aktivitäten aus Pflanzenbau und Tierhaltung auf Ebene des Schlages beziehungsweise des Stalls.

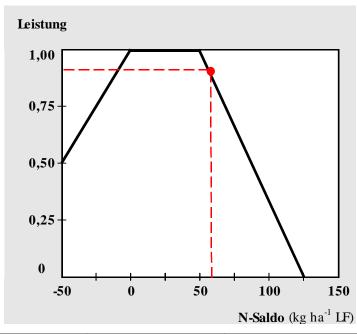
Modularer Aufbau:


Sechs miteinander vernetzte Module (Bewirtschaftungssystem, Stammdaten, Standort, Stoff- und Energieflüsse, Ökologische Bewertung und Ökonomische Bewertung) und circa 200 Indikatoren.

 Bewertungsfunktion für die Indikatoren: Errechnetem Betriebswert wird ein Zielerreichungsgrad zugeordnet, dessen Wert sich zwischen `0´ (ungünstigster Fall) und `1´ (günstigster Fall) bewegen kann.


Systemansatz von REPRO: Vernetzte Stoff- und Energieflüsse auf Betriebsebene

REPRO: Indikator Stickstoffsaldo: N-Flüsse zur Berechnung des flächenbezogenen N-Saldos


REPRO: Informationssystem "Agrar-Nachhaltigkeitsindikatoren" Bewertung des Indikators "Flächenbezogener N-Saldo"

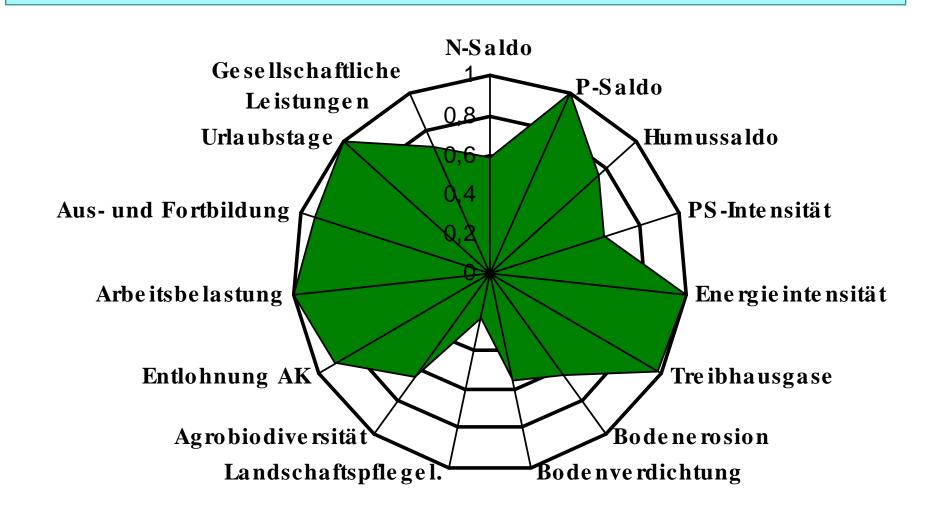
REPRO: Übersicht ökologischer Indikatoren Erfasste Umweltbereiche

	Indikator	Umweltbereich				
		Ressourcen	Boden	Wasser	Luft	Biodiversität
1	N-Saldo	+	+	++		+
2	P-Saldo					+
3	Humus-Saldo		++	+	+	
4	Biodiversität		+			++
5	Energieintensität	++			+	
6	Pflanzenschutzintensität			+		++
7	Bodenschadverdichtung		++			
8	Bodenerosion		++	+		
9	Treibhausgase				++	
10	Landschaftspflege					++

Bewertung der Nachhaltigkeit im System REPRO am Beispiel des Stickstoffsaldos

Bereich	kg N ha ⁻¹	Begründung
N-Defizit	-50 - 0	Abnahme Boden-N und Ertragspotential
O p tim albereich	0 - 50	unvermeidbare N-Verluste
N-Überschuss	50 - 125	erhöhte N-Verluste
N-Oberschuss	> 125	überhöhte N-Verluste
Ausschlusskriterium?	> 150	nicht tolerierbare N-Verluste

Nachhaltigkeitszertifikat für landwirtschaftliche Betriebe


Indikatoren für die Nachhaltigkeit landwirtschaftlicher Betriebe

Ökologie	Soziales	Ökonomie
Stickstoffsaldo	Entlohnung Arbeitskraft	Betriebseinkommen
Phosphorsaldo	Arbeitsbelastung	Faktorentlohnung
Humussaldo	Aus- und Fortbildung	Ausschöpfung Kapitaldienstgrenze
Energieintensität	Urlaubstage	Nettoinvestition
Treibhausgase	Mitbestimmung	Gewinnrate
Pflanzenschutzintensität	Gesellschaftliche Leistungen	Eigenkapital- veränderung
Biodiversität		
Bodenverdichtung		
Bodenerosion		
Landschaftspflege		

Auswertung pflanzenbaulich-ökologischer Indikatoren

Indikator	2004	2005	2006	Ø	Wertung
N- Saldo kg/ha	82	78	122	94	(0,59)
P- Saldo kg/ha	4,7	2,9	26,3	11,3	(1,00)
H- Saldo HE/ha	0,41	0,32	0,32	0,35	(0,74)
Treibhausgase CO ₂ /GJ	11,7	12,0	14,4	12,7	(0,98)
Energieintensität MJ/GE	144	144	176	155	(1,00)
PS- Intensität (Index)	0,5	0,63	0,67	0,6	(0,60)
Agrobiodiversität	0,68	0,61	0,67	0,65	(0,65)
Landschaftspflege	0,23	0,23	0,23	0,23	(0,23)
Bodenerosion t/ha/a	5,3	4,4	5,4	5,0	(0,63)
Bodenschadverdichtung	0,1	0,07	0,07	0,18	(0,55)
Ergebnis					(0,70)

Nachhaltigkeitsprofil eines landwirtschaftlichen Betriebes

Nachhaltigkeitsindikatoren für die Handlungs- und Entscheidungsebene eines Individuums

Ein Verbraucher benötigt z. B. folgende Informationen, damit er bei der Beschaffung seiner Nahrungsmittel Nachhaltigkeitsaspekte berücksichtigen kann:

- Energienutzung
- Ressourcenverbrauch
- Flächeninanspruchnahme
- Sozialwirkungen

Entsprechende Informationen gehören in einfacher Form auf die Produktverpackung (z.B. in Form von Schulnoten [1 – 6] oder Zeichen [*, ++, +, -, --])

Grundlagen Energie

1 Joule = die Arbeit, die verrichtet wird, um ein Gewicht von 100 g um 1 Meter hochzuheben

1 J = 1 Ws

1 kWh = 3.6 MJ

1 kWh = 860 kcal

1 | Diesel/Heizöl enthält rund 40 MJ

Energieverbrauch verschiedener Feldarbeiten

Arbeitsgang	Energie- aufwand MJ/ha
Pflügen	488
Hacken	188
Spritzen	38

Arbeitsgang	Energie- aufwand MJ/ha
Mähdrusch	863
Zuckerrüben- ernte	1173
Silomaisernte	1419

Energieaufwand für die Herstellung von Düngemitteln

Düngemittel	MJ pro kg Nährstoff
Harnstoff (N)	46,1
Kalkammonsalpeter (N)	35,1
Triple-Superphosphat (P ₂ O	₅) 9,9
Kaliumchlorid (K ₂ O)	3,5
Kalkdünger (CaO)	1,5

von OHEIMB (1987), SCHOLZ et al. (1998)

Energieaufwand für die Produktion, Ernte und Lagerung von Getreide

Fruchtart	MJ/kg	
Hafer	3,2	
Wintergerste	3,3	
Winterweizen	3,5	
Winterroggen	4,0	
Zum Vergleich Winterraps	5,7	

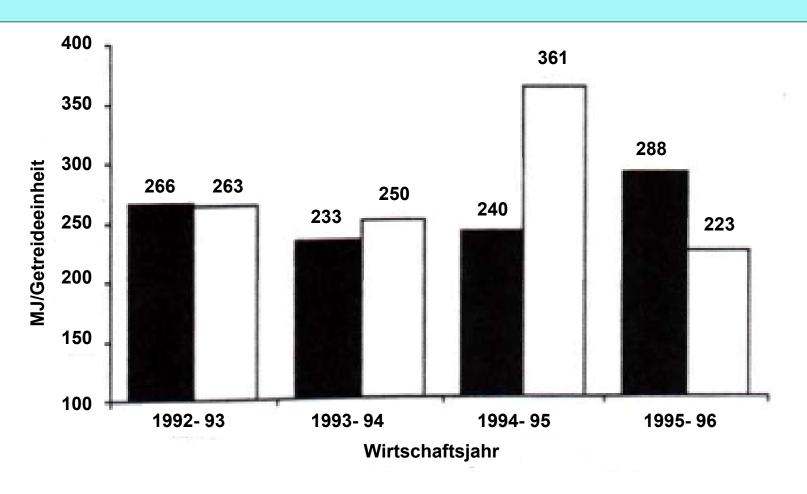
OHEIMB (1987), GAILLARD et al. (1997)

Energieaufwand für die Pflanzenproduktion in unterschiedlichen Betriebstypen

Betriebstypisierung

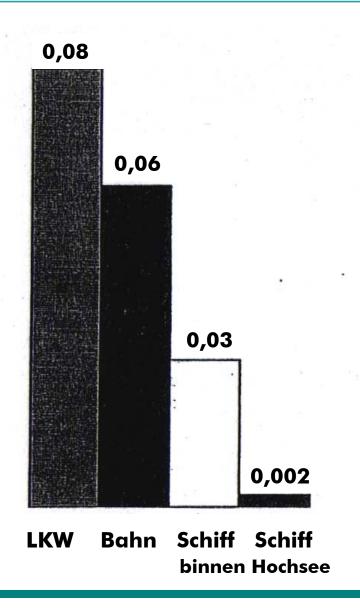
(Gigajoule/na)

Organische Betriebe (KÖPKE & HAAS 1997) 6,8

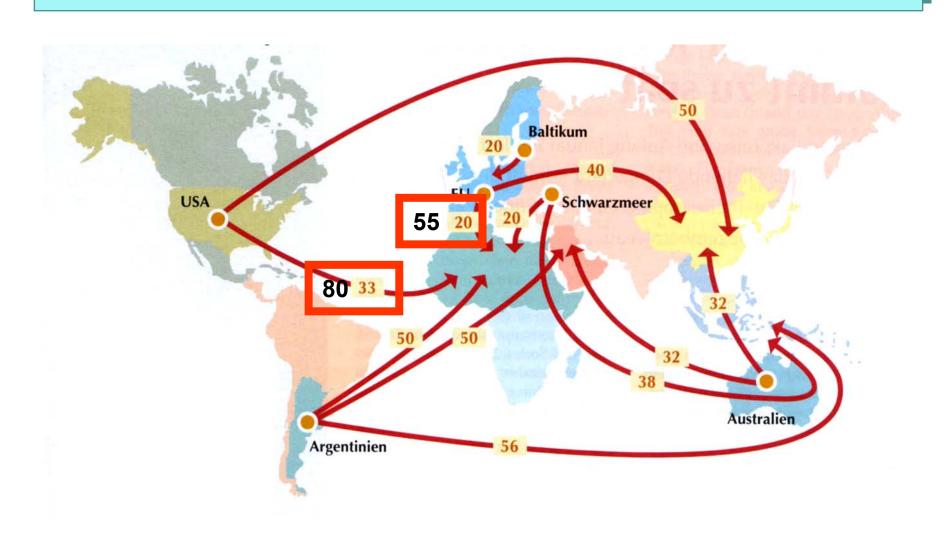

Organischer Betrieb (WECHSELBERGER et al. 1997)
7,2

Integrierter Betrieb (WECHSELBERGER et al. 1997) 17,5

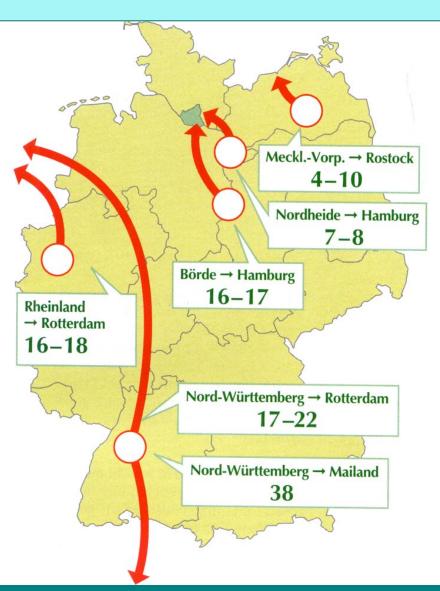
Integrierter Betrieb (TREMEL 2000)
13,0

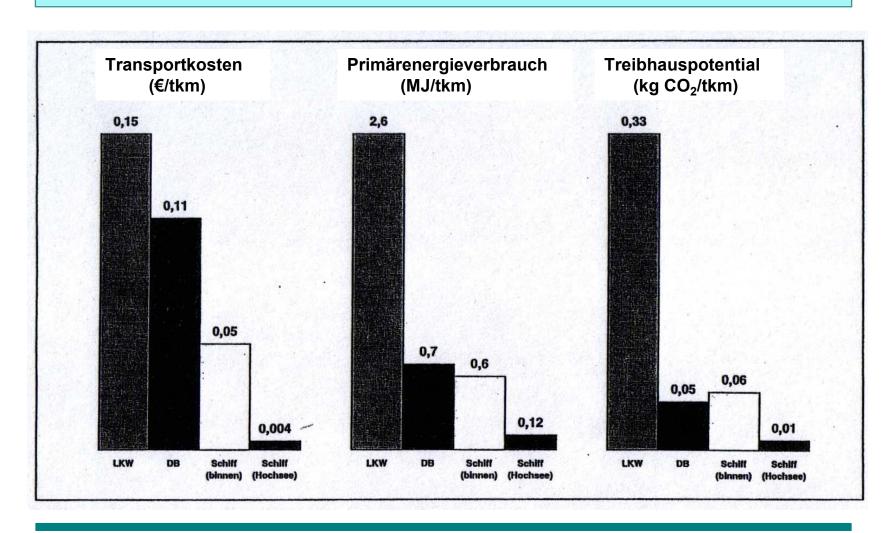

Konventionelle Betriebe (WETTRICH & HAAS 1999)

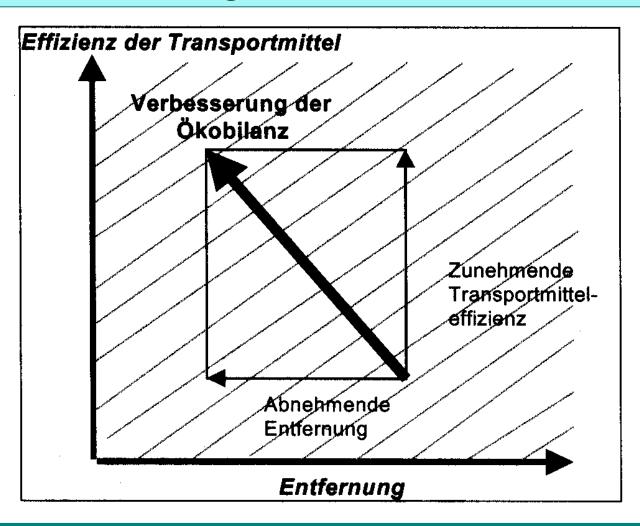
Fruchtfolgebezogene Entwicklung der Energie-Effizienz



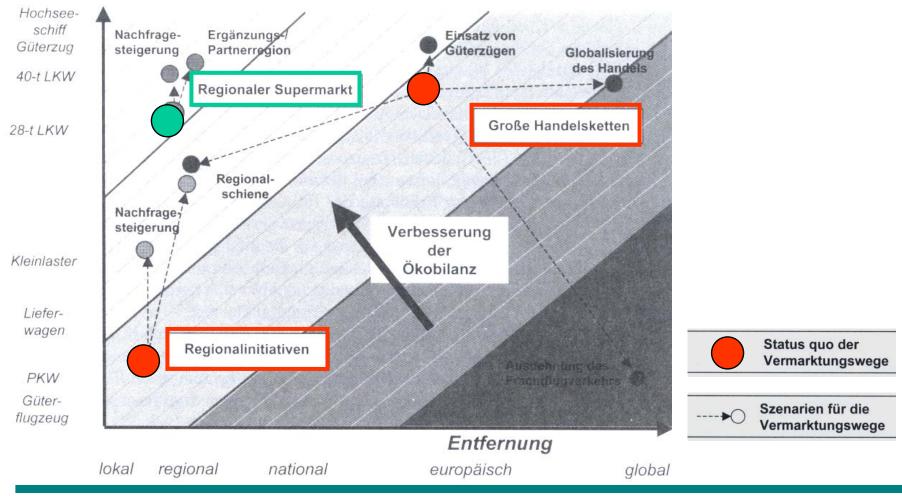
■ Integrierter Betrieb □ Biologischer Betrieb


Transportkosten von Getreide (in €/tkm)

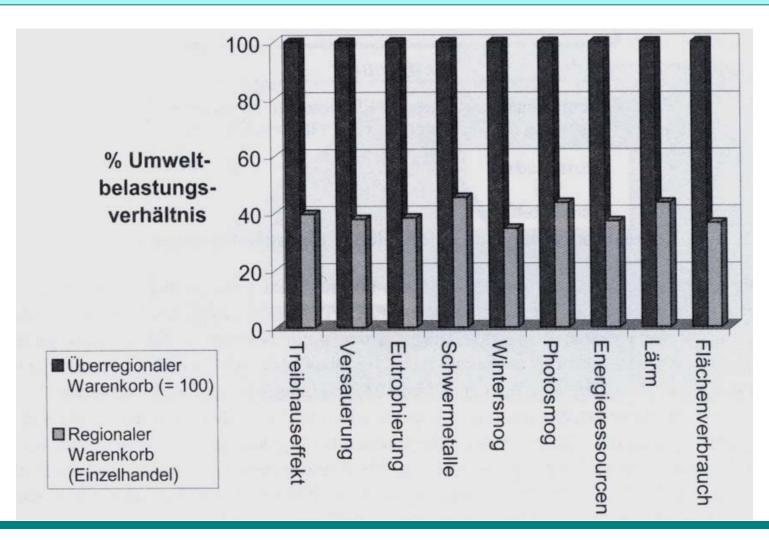

Transportkosten für Getreide (in €/t)


Transportkosten für Getreide zum Hafen (in €/t)

Ökonomische und ökologische Aspekte des Transportes von Getreide

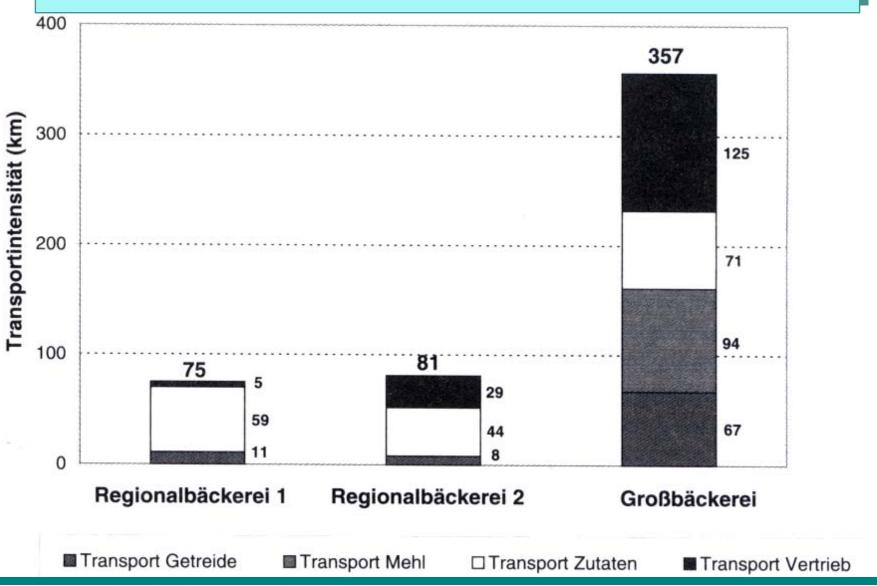


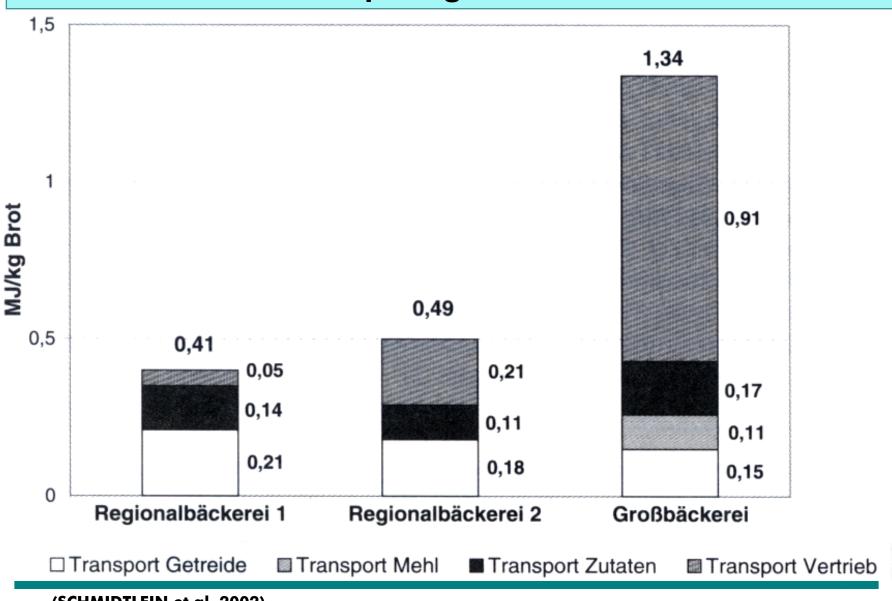
Zusammenhang zwischen der Effizienz der Transportmittel und der Entfernung zur Verbesserung einer Handels-Ökobilanz



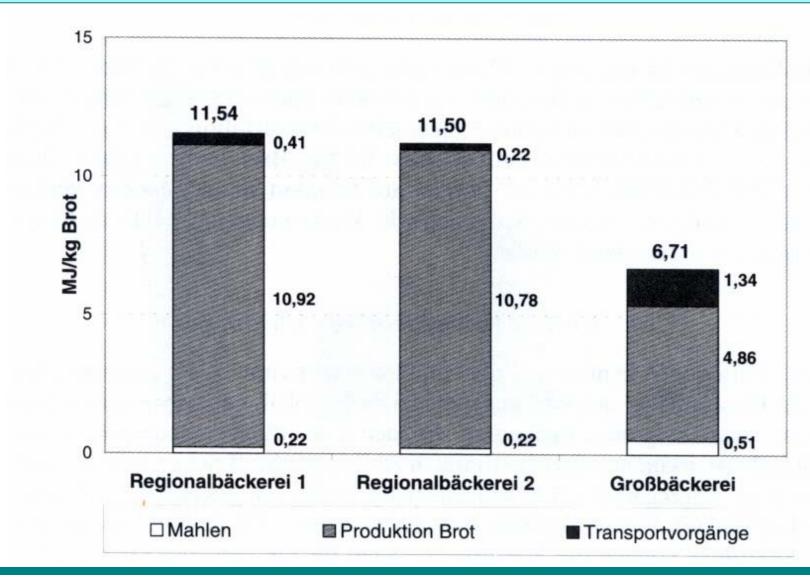
Handels-Ökobilanzwerte für Lebensmittel unterschiedlicher Herkunftsräume differenziert nach Absatzwegen

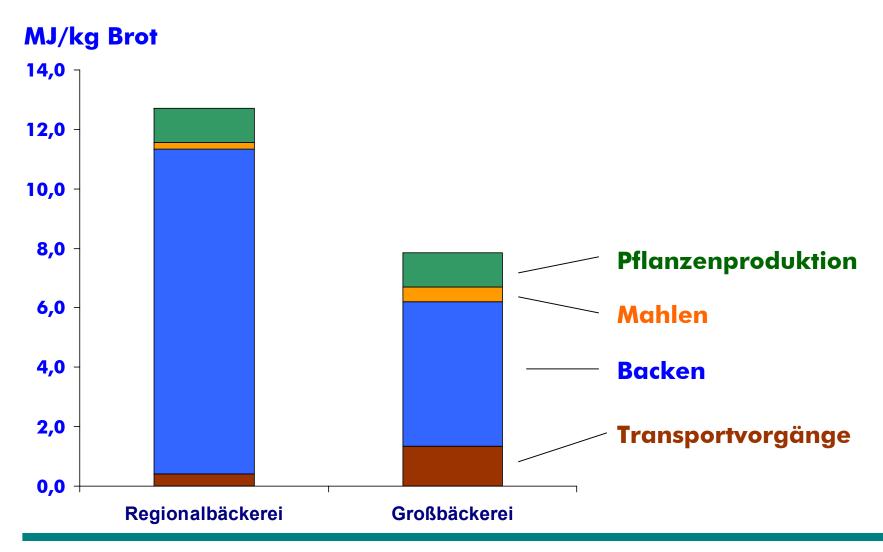
Effizienz der Transportmittel


Vergleich der handelsbezogenen Umweltbelastungen eines regionalen Warenkorbes des Lebensmitteleinzelhandels und eines überregionalen Warenkorbes

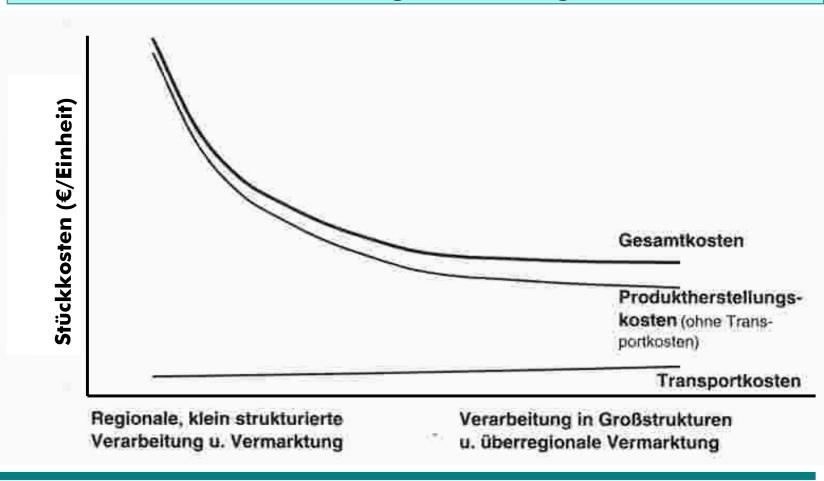

Überblick über die Güterverkehrsleistungen für die Herstellung und den Vertrieb von Brot

Herstellungsstufen	Regionalbäckerei 1	Regionalbäckerei 2	Großbäckerei	
Getreide Anzahl der Lieferanten	Ein Landwirt (Oberbayern)	Fünf Landwirte (Oberbayern)	Ca. 300 Landwirte (vorw. aus Bayern)	
Transport vom Land- wirt bis zum Ort der Mehlherstellung Transportmittel PKW Gesamtstrecke 27 km, Ø 650 kg je Transport- vorgang		PKW, Kleinbus Klein-LKW Gesamtstrecke 36 bis 125 km, Ø 317 kg je Trans- portvorgang	z.T. Selbstanliefe- rung mit schlepper- gezogenen Trans- portwagen, z.T. Ab- holung durch LKW (Silozüge bzw. Plan- wagen mit Anhän- ger, 24 t Nutzlast)	
Mehl Transport von der Mühle zum Ort der Brotherstellung	Nicht erforderlich (Vermahlung in der Bäckerei)	Nicht erforderlich (Vermahlung in der Bäckerei)	Silozüge mit 24 t Nutzlast (Entfernung 67 km)	
Brot Transport von der Bäckerei zu den Verkaufsstellen	3 Filialen auf 10 km-Strecke	4 Filialen und 3 Verkaufsstellen in Naturkostläden auf 40 km-Strecke	jährlich ca. 9000 Fahrten mit Ø 1230 kg Brot/Fahrt	

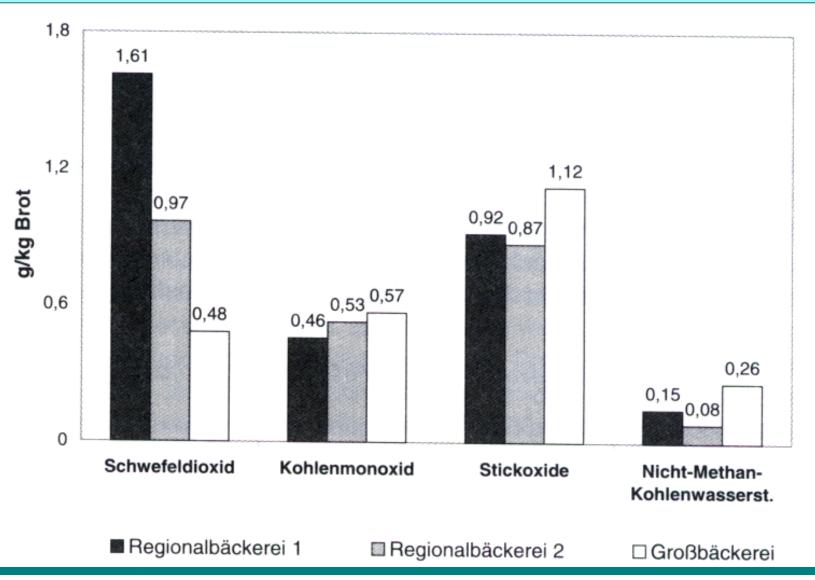

Transportintensität bei der Herstellung und dem Vertrieb von Brot


Energienutzung für den gesamten Transport pro kg Brot

Energienutzung bei der Herstellung und dem Vertrieb von Brot



Energienutzung bei der Herstellung und dem Vertrieb von Brot



nach SCHMIDTLEIN et al. (2002), ENQUETE-KOMMISSION "Schutz der Erdatmosphäre" (1994)

Einfluss steigender Transportkosten auf die strukturelle Entwicklung der Verarbeitung und Vermarktung in der Region

Ausgewählte Emissionen für die Herstellung und den Vertrieb von Brot

Energieaufwand Brotherstellung

Der Gesamtenergieaufwand für die Bereitstellung von 1 kg Brot beträgt zwischen 6 und 12 MJ

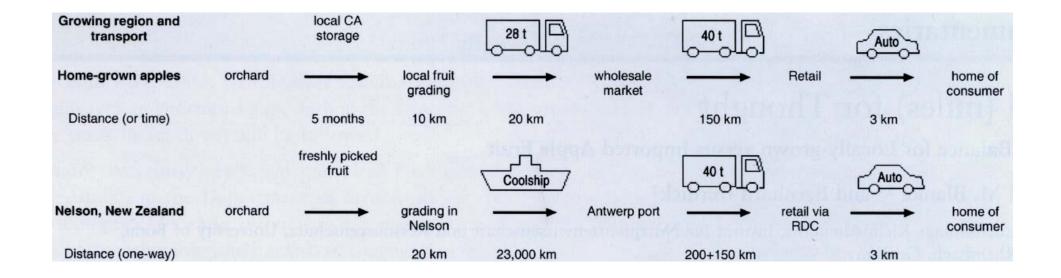
Zum Vergleich:

Energieaufwand, um 10 Brötchen mit einem Mittelklasse-Pkw vom Bäcker zu holen (Entfernung: 1 km):

8 MJ für 10 Brötchen = \sim 25 MJ/kg Brot

Durchschnittlicher Energiebedarf für die Bereitstellung von Gemüse

Gemüseart	Energiebedarf (MJ/kg)
Gemüse der Saison	7,6
Gemüse der Saison aus Europa	12,2
Dosengemüse	20,6
Tiefkühlgemüse	23,0
Gemüse in Mehrweggläsern	24,8
Gemüse in Einweggläsern	27,3
Gemüse aus beheizten Gewächshäuse	rn 46,6
Frischgemüse mit Flugzeug importiert	108


Durchschnittlicher Energiebedarf für die Bereitstellung verschiedener Nahrungsmittel

Produkt	Energiebedarf (MJ/kg)
Reis	21
Zucker	1 <i>7</i>
Margarine	17
Käse	76
Fisch	79
Geflügelfleisch, Schweinefleisch	86
Rindfleisch	110

Vergleich lokal erzeugter Äpfel der Sorte Braeburn im Vergleich zu importierten aus Neuseeland

Parameter	Apple	Apple Braeburn	
Variety	Braeburn		
Rootstock	M 9	MM 106	
Growing region	Meckenheim/Bonn Nelson/New Zea		
Harvest	mid-October	End of March	
Yield	40 t/ha	90 t/ha	
Storage	5 months til March	Fresh fruit (no storage)	
Marketing	Marketing April: Rhine-Ruhr April: R		

Transport – Vergleich lokal erzeugter Äpfel der Sorte Braeburn im Vergleich zu importierten aus Neuseeland

CA = controlled atmosphere, RDC = regional distribution center

Primärenergiebedarf – Vergleich lokal erzeugter Äpfel im Vergleich zu importierten aus Neuseeland

Home-grown, local fruit	Energy per unit [per kg, t, km or day]	Primary energy requirement [MJ/kg apples]	Import from New Zealand	Energy per unit [per kg, t, km or day]	Primary energy requirement [MJ/kg apples]
Apple cultivation	2.8 MJ/kg ¹	2.800	Apple cultivation	2.8 MJ/kg ¹	2.100
20 km transport to Meco	3.47 MJ/t/km ²	0.069	40 km transport to Nelson	3.47 MJ/t/km ²	0.139
Initial cooling	86.3 kJ/kg ³	0.086	Initial cooling	86.3 kJ/kg ³	0.086
150 days CA storage at 1°C in Meckenheim	5.4 kJ/kg/day	0.810	23,000 km reefer Nelson-Antwerp ³	0.11 kJ/kg/km ³	2.534
			28 days cooling on board ³	10.8 kJ/kg/day ³	0.302
Packaging	650 kJ/kg	0.650	Packaging	650 kJ/kg	0.65
40 km in < 28 t truck to wholesale market Roisdorf	2.32 MJ/t/km ²	0.093	200 km in < 40 t truck to regional distribution centre	1,38 MJ/t/km ²	0.276
150 km < 40 t truck to retail	1.38 MJ/t/km ²	0.207	150 km < 40 t truck to retail	1.38 MJ/t/km ²	0.207
Cooling on truck 95 km	0.3 MJ/t/km	0.028	Cooling on truck 175 km	0.3 MJ/t/km	0.055
Consumer shopping 6 km ⁴	3.83 MJ/km ⁴	1.150	Consumer shopping 6 km ⁴	3.83 MJ/km ⁴	1.150
TELL VILLEY IN THE PROPERTY OF THE	Local fruit	5.893	Commentatives of her visital	Imported fruit	7.499

BLANKE & BURDICK (2005)

¹PIMENTEL (1979), ²FRISCHKNECHT et al. (1994), ³HOCHHAUS et al. (1994), ⁴KJER (1994)

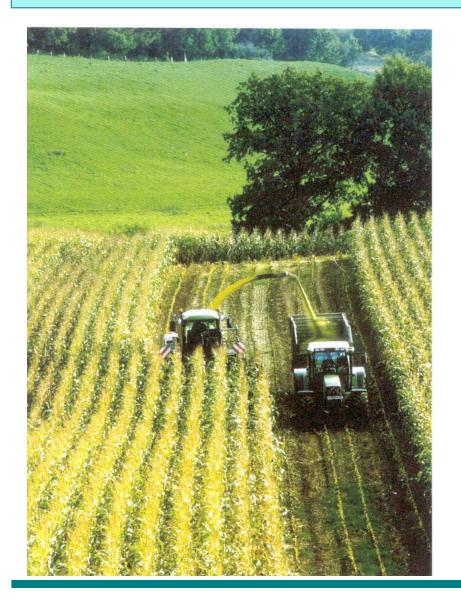
Von der Landwirtschaft ausgehende Umweltbelastungen

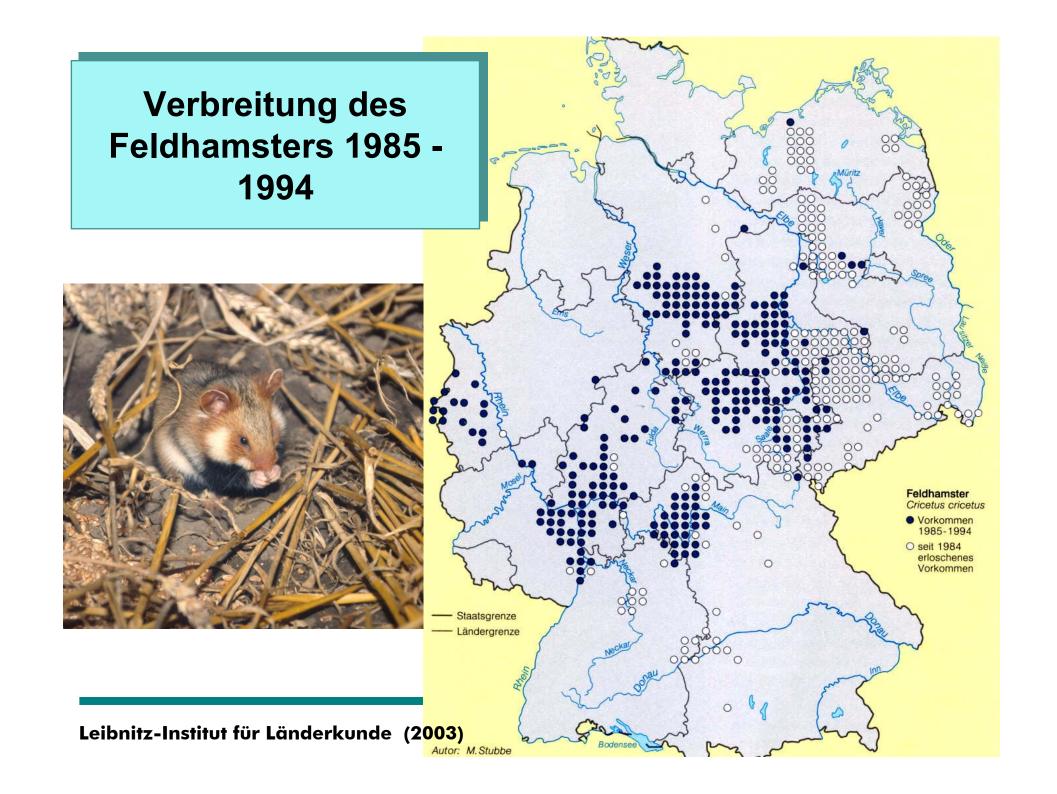
- Artenrückgang in der Agrarlandschaft
- Stoffausträge ins Grundwasser und in Oberflächengewässer
- Belastung des Bodens mit den Problembereichen Erosion,
 Schadverdichtung und stoffliche Belastung
- Freisetzung gasförmiger Verbindungen (Lachgas, Methan), die zum Treibhauseffekt und zum stratosphärischen Ozonabbau beitragen
- Ammoniakemissionen aus der Tierhaltung, die zur Versauerung und Eutrophierung beitragen
- Beeinträchtigung der Nahrungsmittelqualität

Artenrückgang in der Agrarlandschaft

Jede Form der Landnutzung führt zu einem nutzungstypischen Arteninventar

Es ist unvermeidlich, dass es zu Anpassungen bei den Tier- und Pflanzenarten kommt, wenn ...



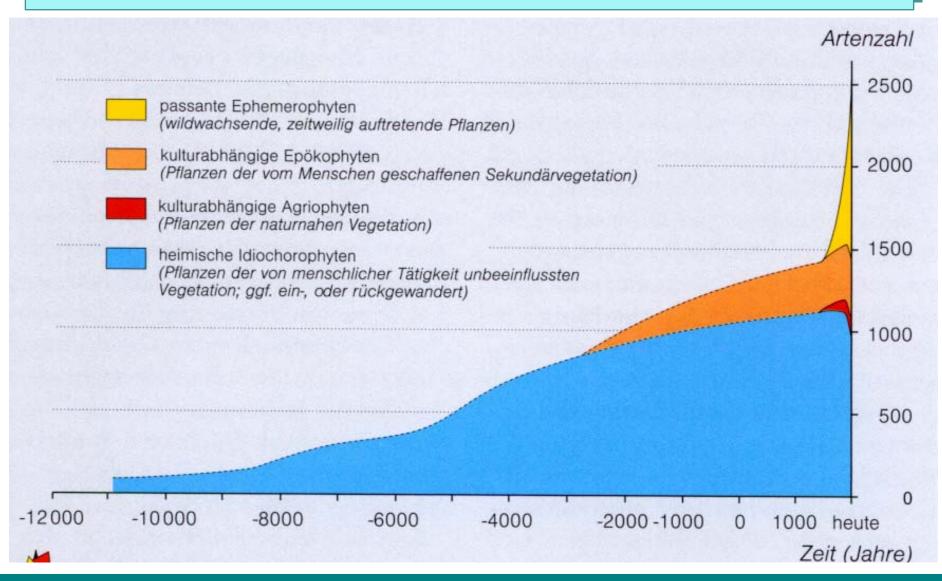

Fotos: Schiffer

... sich die Landnutzung in 50 Jahren vollständig verändert!

Rückgang von Unkrautarten in Deutschland

auf Äckern vorkommende Pflanzenarten: ca. 350

davon wirtschaftlich wichtig: ca. 50


Aufgeführt in einer der Kategorien der Roten Liste: 93

Lämmersalat (Arnoseris minimus)

Zuwachs an Pflanzenarten im Holozän (Nacheiszeit) am Beispiel Mecklenburg

Herkunft von Unkräutern

Apophyten

Pflanzenarten, die vor Beginn des Ackerbaues in einem Gebiet auf natürlichen (primären) Standorten vorkamen und dann auch Bestandteil der Acker-Begleitflora wurden

Anökophyten

Pflanzenarten, die auf natürlichen Standorten heimatlos sind und die erst auf anthropogenen Standorten in (prä)historischer Zeit entstanden sind

Beispiele für Apophyten

Galium aparine (Klettenlabkraut)

Stellaria media (Vogelmiere)

Beispiele für Unkrautarten mit natürlichen Vorkommen in der Vegetation Mitteleuropas (Apophyten)

Ackerkratzdistel

Ackerschachtelhalm

Ackerwinde

Stechender Hohlzahn

Klettenlabkraut

Gemeiner Rainkohl

Cirsium arvense

Equisetum arvense

Convolvulus arvensis

Galeopsis tetrahit

Galium aparine

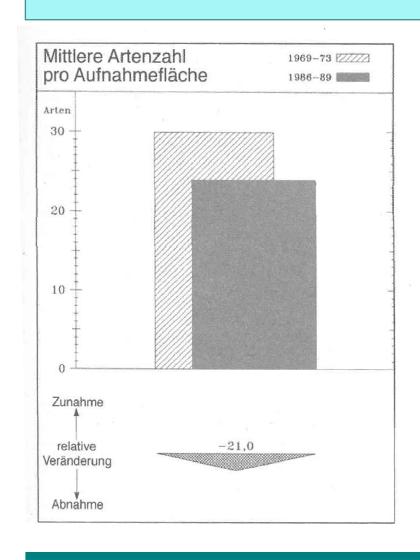
Lapsana communis

Beispiele für Anökophyten 1

Viola arvensis (Ackerstiefmütterchen)

Sinapis arvensis (Ackersenf)

Beispiele für Anökophyten 2



Avena fatua (Flughafer)

Agrostemma githago (Kornrade)

Veränderungen im Auftreten von Ackerwildkräutern

Vergleich von Vegetationsaufnahmen aus dem Zeitraum 1969-73 mit Aufnahmen der gleichen Flächen aus den Jahren 1986-89 in Nordbayern

Vergleich der mittleren Artenzahl pro Aufnahmefläche

Veränderungen im Auftreten von Ackerwildkräutern

zugewanderte Arten') (neu gefundene Arten)

ortstreue Arten (wiedergefundene Arten)

abgewanderte Arten*) (nicht mehr gefundene Arten)

*) Pfeilgröße relativ zu den ortstreuen Arten

Vergleich von Vegetationsaufnahmen aus dem Zeitraum 1969-73 mit Aufnahmen der gleichen Flächen aus den Jahren 1986-89

Die Zahlen geben den durchschnittlichen Artenaustausch pro Fläche an

Räumliche Konzepte für das Verhältnis von Naturschutz und Landwirtschaft

Naturschutz und Landwirtschaft auf einer Fläche

KOMBINATION

Naturschutz- und Produktionsflächen getrennt, aber eng nebeneinander

VERNETZUNG

INTEGRATION

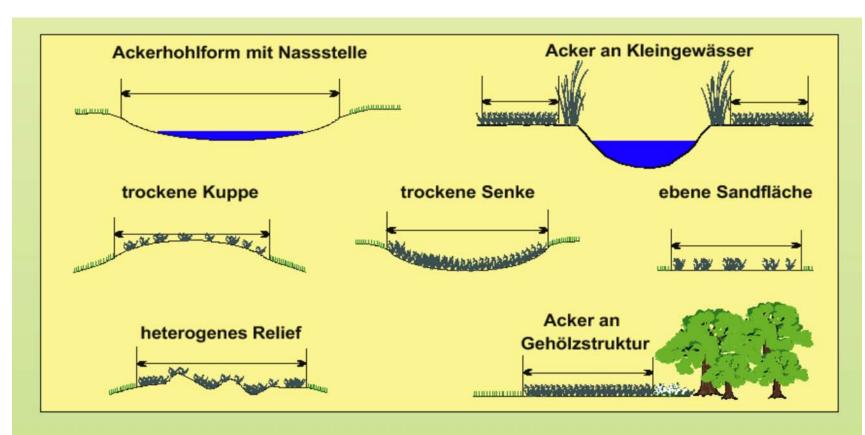
Naturschutz- und Produktionsflächen räumlich getrennt, evtl. durch Pufferzonen abgeschirmt, Naturschutzflächen arrondiert

SEGREGATION

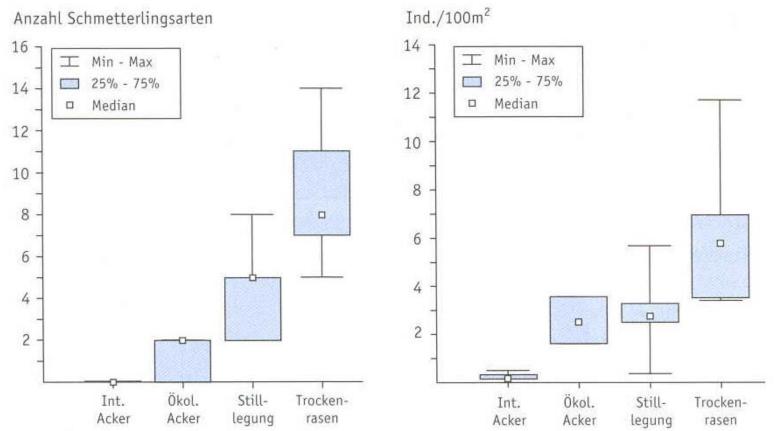
Maßnahmen zum Schutz von Unkrautarten

- Ökologischer Landbau
- Selbstbegrünte Rotationsbrachen (max. 3jährige Dauerbrache)
- Ackerrandstreifenprogramme
 /Teilflächenmanagement
- Museumshöfe

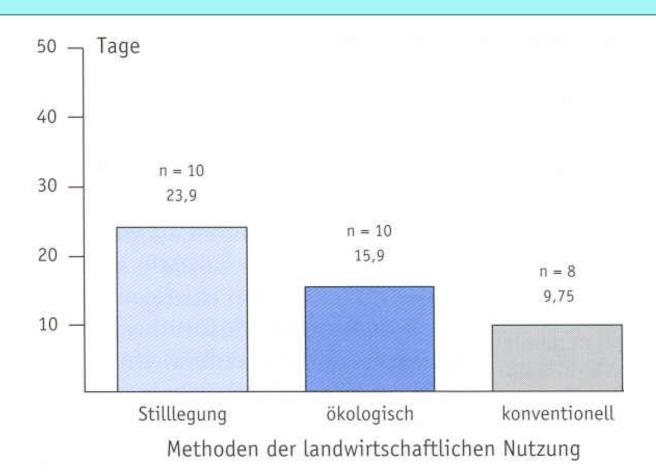
Finanzierungsbasis der Maßnahmen über:


- höhere Produktkosten (z.B. erlöst aus regionaler Vermarktung)
- Honorierung ökologischer Leistungen
 - > zweite Säule der EU-Förderung
 - > nationale und regionale Naturschutzprogramme
- Eintrittsgelder, Produktverkauf

Anlage von Randstreifen in der Köln-Aachener Bucht



Strukturen für kleinflächige Stillegungen


Schnittdarstellung der einzelnen, für die Anlage von kleinflächigen Stilllegungen besonders geeigneten Teilflächen von Ackerschlägen

Durchschnittliche Artenvielfalt (A) und Dichte (B) von spezialisierten Schmetterlingen in 4 Habitattypen mit verschiedenen Arten der Landnutzung

Int. Äcker = Intensiv genutzte Äcker, Ökol. Äcker = ökologisch bewirtschaftete Äcker

Durchschnittliche Aufenthaltsdauer von besenderten Wachteln auf unterschiedlich bewirtschafteten Flächen

Beitrag der Landwirtschaft zum Naturschutz

Landwirtschaftliche Flächennutzung (Ackerbau, Grünlandwirtschaft) schafft die Voraussetzungen bzw. gewährleistet den Erhalt von Vegetationsformen, die auf regelmäßige Eingriffe angewiesen sind (Wiesen, Weiden, Halbtrockenrasen, Unkrautfluren, Heiden etc.)

Landwirtschaftliche Nutzung kann die Kosten für den Erhalt bestimmter Vegetationsformen vermindern, wenn es gelingt, für die erzeugten Produkte einen höheren Preis zu erzielen, indem der Käufer die mit der Erzeugung verbundenen ökologischen Leistungen honoriert.