Judging Renewables-based Products – LCA in Practice

Biorefinica 2009

January 27-28, Osnabrück, Germany

Dana Kralisch and Denise Reinhardt

Sponsored by

Deutsche Bundesstiftung Umwelt

www.dbu.de

Outline

- Introduction
 - Methodology of Life Cycle Assessment
 - Selected examples from literature
- Case example I: industrial cleaner formulations for metals
- Case example II: Solvents in Diels-Alder reaction

Uni Regensburg

© NABU Oberflächentechnik

Life Cycle Assessment (LCA)

Methodological framework for estimating and assessing the environmental impact attributable to the life cycle of a product / process

- Avoids problem shiftings
- Makes the environmental impacts of different products or processes comparable
- Is standardised by DIN EN ISO 14040 and 14044

Life cycle inventory (LCI)

DIN EN ISO 14040: 2006

Life cycle impact assessment (LCIA)

Material and energy flows

Environmental impact potentials

Impact categories considered*:

- Global warming (GWP)
- Abiotic recource depletion (ADP)
- (Stratospheric) ozone depletion (ODP)
- (Tropospheric) photochemical ozone creation (POCP)
- Acidification (AP)
- Eutrophication (NP)
- Human toxicity (HTP)
- Ecotoxicity (ETP)
- Land competition (LC)
- Cumulative Energy Demand (CED)

$$IP = \sum_{i=1}^{n} m_i \cdot IF_i$$

m = mass

IF = impact factor

*Source: CML 2001

TA of Renewable Raw Materials

Range of differences between CED-values in various studies »RENEWABLE – FOSSIL« resource [MJ/kg]

In most cases no explicit advantages for renewable recources

PHA = Polyhydroxyalkanoate PHB = Polyhydroxybutyrate

Source: TFA, Nr. 114, 2007

LCA of biofuels

- Holistic comparison of the environmental impacts of biofuels*
- Fuels examined → bioethanol, biomethanol, biodiesel and biogas
- "Most of the environmental impacts can be attributed to the agricultural cultivation of the respective raw materials", fuel processing and transportation less demanding
- Biogenic wastes ranging from grass to wood are pointed out as efficient solution to reduce the environmental impact compared with petrol

*Source: EMPA, 2007

Review of LCA studies of Polysaccharide Materials

Impact categories considered within review:

Non-renewable energy use (NREU)

Greenhouse gas emissions (GWP)

*Source: L. Shen, M. Patel, J. Polym. Environ., 2008, 16:154–167

"Polysaccharide-based end products show better environmental profiles than their conventional counterparts" (Exception: cotton)

Information about impacts related to 1 kg material not sufficient

Assessment of Renewable Raw Materials

Ideal approach:

Detailed "cradle to grave" LCA for each alternative including all impact categories (e.g. suggested by CML)

Reality:

- Simplified LCA
- Evaluation at a more superficial level
- "cradle to gate" approaches + concentration on selected impact categories e.g. energy demand and climate change
- Aspects like toxicity, eutrophication, acifidication and land competition → often not included
- Differences in material properties, e.g. higher material demand for the same application task or restricted recycling → not adressed

Sources:

PE International Report, 2007 TFA, Nr. 114, 2007 L. Shen, M. Patel, J. Polym. Environ., 2008, 16:154–167

Case Example I: Industrial Cleaners

Partners: Institute for Corrosion Protection, Dresden; NABU

Oberflächentechnik GmbH, Stulln; FSU Jena

Project target: Ecological improvement of industrial cleaner formulations for aluminium surfaces

Industrial cleaners: Fluids used for cleaning and degreasing of metal surfaces before etching, metallisation and coating

Ecological Accompanying LCA

evaluation: System boundary: Cradle to use

Strategy

Metal cleaner formulations for aluminium surfaces → focus upon compounds made from renewable resources

- Alkyl ethoxylate from petrochemical sources -> alkyl polyglycosides from coconut oil
- Adaptation of additional components
- Two new cleaner formulations (formulation 1 and 2)

Accompanying assessment

- Ecological impact compared to a commercially available "state of the art" reference formulation (reference)
- Impact on further product development

Life cycle inventory

Component	Formulation 1 [%]	Formulation 2 [%]	Reference
Alkyl polyglycoside (based on coconut oil)	4	4	-
Alkyl ethoxylate	-	-	+
Anionic surfactant	-	-	+
Na-Gluconate	2	5	+
Na-Citrate	2	3	-
Phosphonic acid	-	-	+
Polyphosphate	-	5	+
Na-Pyrophosphate	7	-	-
Na-Carbonate	7	5	-
Na-Hydroxide	3	3	+
Water	75	75	+

Specifications

FU = 1000 m² clean Al-surface

Cleaning process: immersion bath

Surface flow rate of the cleaning process:

1.25 m² Al-surface / L bath

Cleaner concentration:

	Scenario 1	Scenario 2
Reference	50 g / L bath	30 g / L bath
Formulation 1	50 g / L bath	50 g / L bath
Formulation 2	50 g / L bath	30 g / L bath

T6:Starch P2 Sub level: T16:Coconut oil T13:Ammoniumnitrate P2 P2 P2 P1 P1 P1 T8:NaCl T5:Coconut T12: Lime stone P19 P9 P16 P1 P15 P2 P6:Alkylpolyglycoside Р3 T1: Hard coal T2:Production P1 P14 P2 T11:KCI **■** P1 P2 P10 P13 T3:Crude oil P2 P2 P12 T10:Single-Superphosphate P17 T4:Natural gas P2 P1 P2 P18 P1 T7:Sulfur P2 P1 T14 T15: Landfill T9:Triple-Superphosphate P2 P23

Material and energy flow system

"Formulation 2"

Alkyl polyglycoside

Umberto v. 5.1 Ecoinvent v. 1.2

LCIA - Cumulative Energy Demand (CED)

Scenario 2

- Most components significantly contribute to the overall impact
- Formulation 1 and 2 both can lead to a reduction of CED

Nutrification Potential (NP)

- Main impact by the supply of the phosphates
- Supply of alkyl polyglycoside less relevant, but higher impact then alkyl ethoxylate + anionic surfactant
- NP of Na-gluconate (and also citrate) is dominated by the cultivation of sugar beets (raw material of the fermentative gluconate production)

Land Competition (LC)

Main impact by the supply of alkyl polyglycosides and Na-gluconate caused by the cultivation of its renewable raw materials

Conclusions from case example 1

Results:

- Significant ecological advantages of the newly designed cleaner formulations based on renewable materials*
- Exception → impact category "land competition"
- Scenario 1 → formulation 1 ecologically favourable
- Scenario 2 → decision between Formulation 1 and 2 not explicitly feasible
- Impact of components significantly varies within the impact categories
- An exclusive consideration of selected impact categories
 - → significantly distorts the results

(*Impact categories considered:

Cumulative energy demand, Global warming, Ozone depletion, Photochemical ozone creation, Acidification, Eutrophication, Human and Eco toxicity, Land competition)

Conclusions from case example 1

Optimisation strategy:

- Substitution of polyphosphate
- Reduction of Gluconate/Citrate fraction

Problems of performing LCA during process development:

- Great lack of LCI data for natural products
 - → consideration of one newly developed formulation was hindered
- Unknown down-stream-processing
 - → LCA restricted to a "cradle to use" approach
 - → further advantages at the end of the life cycle not visible

Case Example II: Solvents in Diels-Alder Reaction

Solvent	T [°C]	Conversion methylacrylate [%]		Endo/exo- selectivity
Methanol	25	48 h	95	4.9
Methanol/water (v/v 1:1)	25	48 h	98	5.5
Acetone	25	48 h	84	3.3
Cyclohexane	25	48 h	90	2.6
[C ₆ MIM][BF ₄]	25	48 h	92	3.8
Dimethylurea/ citric acid (w/w 40/60)*	65	8 h	99	3.7
Solvent-free	25	48 h	98	2.9
[C ₆ MIM][BF ₄]	65	8 h	98	3.3

Non-volatile Non-toxic

^{*} G. Imperato, E. Eibler, J. Niedermaier, B. König, Chem. Comm. (Cambridge, United Kingdom) 2005, 1170.

D. Reinhardt, F. Ilgen, D. Kralisch, B. König, G. Kreisel, Green Chem., 2008, 10(11), 1170.

Cumulative Energy Demand

Efficient recycling strategy \rightarrow CED \downarrow ?

CED - Effect of Solvent Recycling

Low vapour pressure of solvents can be disadvantageous

LCIA: Supply of Molecular Solvents vs. Alternative Solvents

Conclusions from case example 2

Outranking of solvent alternatives concerning i) energy demand, ii) toxicity, iii) costs:

Solvent-free, methanol/water > methanol > acetone > cyclohexane > DMU/citric acid > [C₆MIM][BF₄]

Additional results of SLCA:

- Alternative Solvents as DMU/citric acid melts or IL are NOT a priori "green"
 - → Significant improvements in performance
- Efficient recycling strategies → extraction more energy demanding then distillation
- SLCA helpful tool at early stages of R&D
 - → Decision support tool for "green" product /process design

Acknowlegdements

 Denise Reinhardt, Sabine Hübschmann, Annegret Stark, Günter Kreisel (Uni Jena)

- Ulrich Stieglitz (Institute for Corrosion Protection, Dresden) and Christian Ruhland (NABU Oberflächentechnik GmbH, Stulln)
- Burkhard König and Florian Ilgen (Uni Regensburg)

Thank you for your attention!