DBU Forum Schulbau "Schulbauten – Räume der Zukunft?"

23.3.2017, Katholische Akademie in Bayern, München

Qualitätssicherung und Monitoring am Gymnasium Diedorf

Dr. Jens M. Kuckelkorn Andreas Robrecht

Inhalt

1. Energie-Versorgungskonzept am Schmuttertalgymnasium Diedorf

- Eingesetzte Komponenten und Systeme der Wärme- und Kälteversorgung
- Regelung des Gesamtsystems

2. Qualitätssicherung

- Zielsetzung, Schwerpunkte und Umfang
- Beispiele aus der Planungs- und Bauphase
- Erfolge der Qualitätssicherung

3. Monitoring

- Motivation, Zielstellung und Schwerpunkte des Monitorings
- Umsetzung des Monitorings im Planungsprozess
- Erste ausgewählte Monitoringergebnisse
- Ausblick

Energie-Versorgungskonzept Wärme/Kälte

Die wichtigsten Komponenten im Überblick

Wärmeerzeugung Zwei Pelletkessel á 100 kW

Kälteerzeugung Freie und adiabate Kühlung, Kompressionskälte 136 kW

Speicherung Zwei Pufferspeicher á 7500 l

Verteilung Drei Verteilerbalken definiert nach Temperaturniveau

Übergabe - Raumwärme: FBH mit erhöhter Speicherkapazität

- Raumkälte: FBK mit erhöhter Speicherkapazität nachts

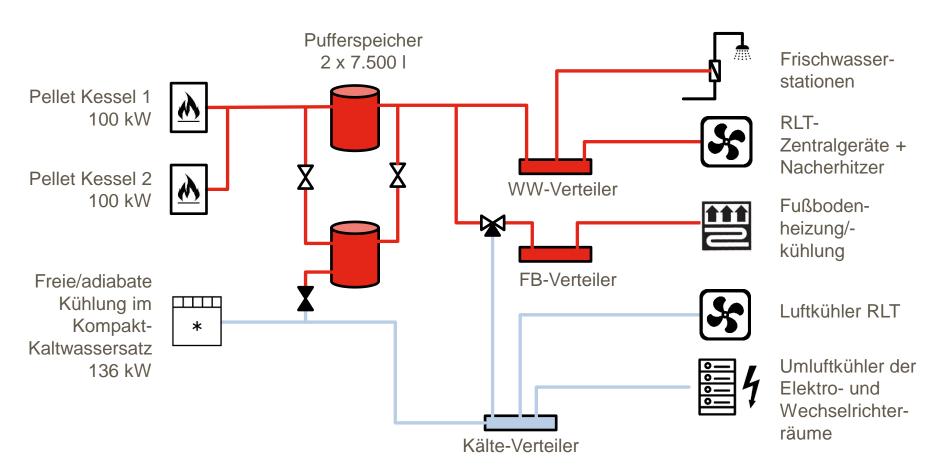
- BWW: Frischwasserstationen in Küche, Sporthalle

- Zuluftvorkonditionierung: Wärme, Wärme

- ELT-/Wechselrichterräume: Umluftkühlung

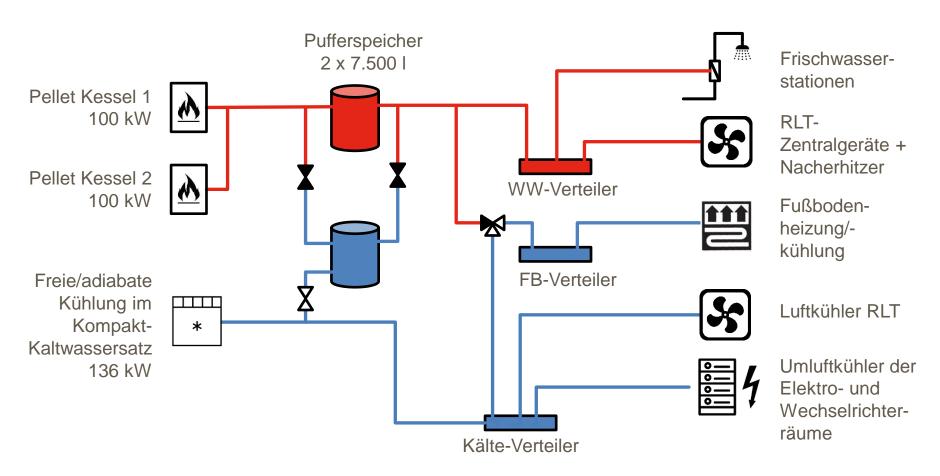
Regelung - Ubergeordneter Sommer-/Winterbetrieb nach Freigabe durch

Holzbalken-Bauteilfühler

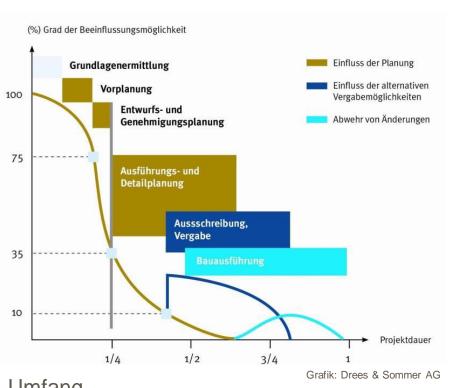

- Wärme- und Kälteerzeuger nach Speichertemperaturen

- Einzelraumregelung nach Raumtemperaturfühler

Energie-Versorgungskonzept Wärme/Kälte


Übersicht des Heiz- und Kühlsystems - Winterbetrieb

Energie-Versorgungskonzept Wärme/Kälte



Übersicht des Heiz- und Kühlsystems - Sommerbetrieb

Motivation und Zielsetzung

Ziele einer Qualitätssicherung:

- Erreichung der Projektziele
- Vermeidung von Bauschäden, eingeschränkter Nutzbarkeit, unwirtschaftlichem Betrieb und ungenügenden Komfortbedingungen
- Kontinuität über alle Projektphasen

Umsetzung

Einbeziehung von Experten in den integralen Planungsprozess schon in den frühen Planungsphasen, in denen wichtige Systementscheidungen getroffen werden (ab Konzept/Vorplanung)

Umfang

Abhängig von Komplexität, den handelnden Personen sowie den Projektzielen. In Diedorf lag der Schwerpunkt auf der Energieeffizienz und Funktionalität der Anlagentechnik sowie dem Raumkomfort.

Beispiel 1: Wissenschaftliche Begleitung der Blower-Door-Tests

In der Bauphase wurden Bauteil abhängig drei Luftdichtheitstest gemacht und detektierte Leckagen abgedichtet. Der relevante Blower-Door-Test erfolgte nach Inbetriebnahme für das Gesamtgebäude mit folgendem Ergebnis:

Ist-Wert $n_{50} = 0.21 \text{ h}^{-1} << \text{Soll-Wert } n_{50} = 0.4 \text{ h}^{-1}$

Somit würde der projektinterne Zielwert deutlich unterschritten.

	Sporthalle	Klassenhaus 1	Klassenhaus 2 + Aula	Alle Gebäude im Verbund
Datum	03.12.2014	17.10.2014	12.12.2014	28.12.2015
Projektphase	Bauphase	Bauphase	Bauphase	Nutzung
Innenluftvolumen [m³]	18.590	15.063	31.813	61.942
Temperatur innen/außen [°C]	11 / 4	16 / 14	15 / 4	20 / 15
Windstärke [Bft]	3	2	3	1
n ₅₀ [h ⁻¹]	0,08	0,15	0,32	0,21

Beispiel 2: Auslegungsvolumenstrom der zentralen Lüftungsgeräte

- CO₂-abhängige Einzelraumregelung erlaubt bedarfsgerechte Frischluftversorgung der Zonen
- Frischluft: Summe aller Endverbraucher
 = 76.000 m³
- Unter Berücksichtigung von Gleichzeitigkeiten konnte das zentrale Lüftungsgerät auf ein Volumen von 45.000 m³ ausgelegt werden. Lastverschiebung Klassenräume -> Fachklassen, Sporthalle, Aula (Umgesetzte Planung)
- Deutliche Reduzierung von Investitionskosten und Platzbedarf der Lüftungszentrale
- Unverändert hoher Raumluftkomfort, da keine Änderung des personenbezogenen Frischluftbedarfs

Weitere exemplarische Beispiele:

- Revision der Entscheidungsmatrix zur Wärme- und Kälteversorgung als Basis für eine Systemwahl in Bezug auf die Projektziele
- Spezifikationen des Verschattungssystems in Bezug auf Reflexionsgrad der Lamellenoberseite, präzise Einstellbarkeit des Lamellenwinkels, Windgeschwindigkeitsklasse des Behangs, hohe Automatisierung der Regelung bei manueller Übersteuerbarkeit
- Vorschläge zum Blendschutz
- Wirtschaftlichkeit und Effizienz der zentralen Wärmerückgewinnung
- Reduzierung der Stand-by-Stromverbräuche
- Optimierung des Funktionsschemas für die Wärme- und Kälteversorgung (Einsatz Frischwasserstationen, Reduzierung der Pufferspeicher von 4 auf 2, Nutzung des Speichers als hydraulische Weiche -> Wegfall separater Komponente)
- Revision und Optimierung der Regelstrategien der Anlagentechnik (insbesondere Heizen, Kühlen, Lüften, Verschatten)
- Stichpunktartige Revision der haustechnischen Ausschreibungsunterlagen (LV's)

Erfolge der Qualitätssicherung

- Sicherstellung von Komfort und Funktionalität
- Einsparung von Nettoinvestitionskosten allein in der KG 400 Heizen/Kühlen/Lüften von 40.000 €
- Reduzierung des Platzbedarfs für die Anlagentechnik (= geringere Baukosten)
- Vereinfachung von Systemen und ihrer Regelung d.h. effizienterer Betrieb mit geringen Betriebskosten, weniger störanfällig, einfachere und damit kostengünstigere Wartung
- Erarbeitung eines schlüssigen Regelkonzepts zur Ausschöpfung von effizienten Komponenten im Betrieb
- Etablierung von innovativen wissenschaftlichen Ansätzen im Planungsalltag

Motivation und Zielsetzung

Wichtiger Baustein für die Erreichung ehrgeiziger Projektziele z.B. in Bezug auf Energieeffizienz, Nutzerkomfort oder Wirtschaftlichkeit ist der Aufbau eines Monitorings als Grundlage von Bestandsanalyse und Betriebsoptimierung mit folgende Zielstellungen:

Hoher Raumkomfort und Behaglichkeit

ganzjährig angenehme operative Raumtemperatur, niedrige CO₂-Konzentrationen in der Nutzungszeit, hoher Anteil an Tageslichtnutzung, zugfreie Einbringung von Frischluft, geringe Nachhallzeiten, ausreichender Blendschutz

Energieeffizienz und Nachhaltigkeit

Analyse und Optimierung der Energieeffizienz bei den Einzelkomponenten (z.B. Umwälzpumpen), den gesamten Systemen (z.B. PV-Anlage) und dem Gesamtgebäude (Plusenergiestandard)

Dabei gibt es eine starke Abhängigkeit der Themengebiete Raumkomfort und Energieeffizienz

<u>Betriebsoptimierung</u>

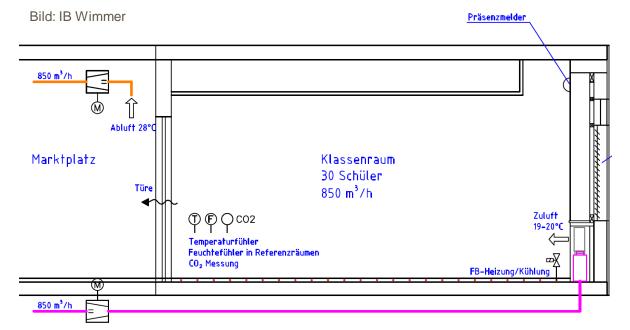
Optimierung der Betriebsparameter im Hinblick auf die gesetzten Zielstellungen, Erarbeitung von Verbesserungsvorschlägen und Umsetzung im Team, abschließende Erfolgskontrolle in Form einer Evaluation

Schwerpunkte des Monitorings

ZAE BAYERN

- Detaillierte Vermessung von fünf Referenzräumen bzw. -zonen zur Analyse von Raum- und Nutzungskomfort, Energieverbräuchen sowie Schalt- und Regelvorgängen in den verschiedenen Betriebsmodi
- Redundante Vermessung von zentralen technischen Anlagen insbesondere des Heiz- und Kühlsystems sowie der Lüftungsanlage zur Beurteilung von Energieeffizienz und Wirtschaftlichkeit
- Separates Monitoring von Sondernutzungen wie Küche, Server, Sporthalle oder Aula
- Ergänzende Erfassung von Stromflüssen getrennt nach Nutzungsarten (Beleuchtung, Pumpen, Steuerung etc.)
- Verbesserte Wetterdatenaufzeichnung zur Optimierung des Gebäudebetriebs und der energetischen Bilanzierung

Präzise WMZ als Splitgerät aus Rechenwerk, Volumenstrommesser und Temperaturfühler im Bauzustand



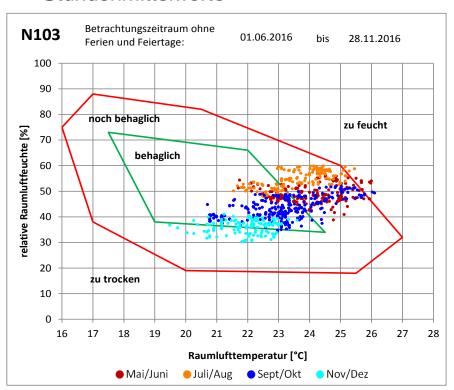
Referenzräume

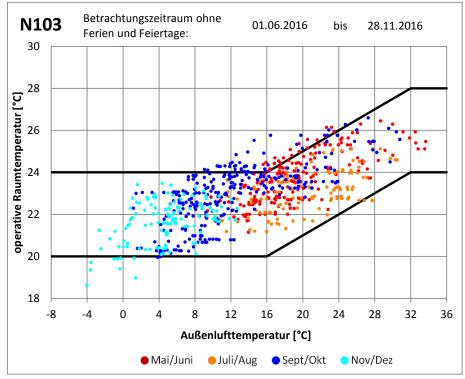
Ziel

genaue Analyse des Raumkomforts bzw. des Energieverbrauchs in Abhängigkeit der anlagentechnischen Versorgungsfunktionen.

Standardsensorik eines Klassenraums (Konzeptphase)

Die wichtigsten zusätzliche Messdaten in den Referenzräumen sind:

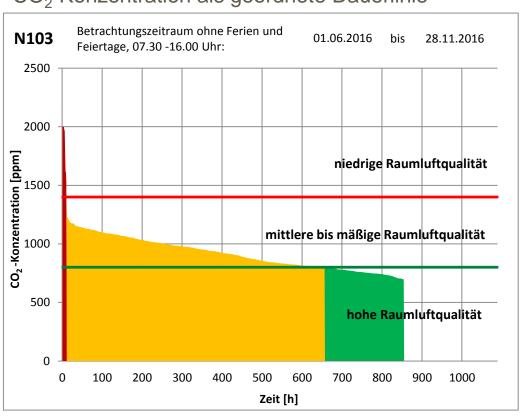

- Rel. Raumluftfeuchte (Behaglichkeit)
- VOC-Konzentration (Gesundheitsschutz)
- Strahlungstemperatur
- Volumenstrom sowie Lufttemperatur und feuchte der Zuluft
- Wärme- und Kältemengenzähler für die FBH
- Stromverbräuche nach Nutzungsarten


Raumluftkomfort im Referenzraum N 103

(offener Klassenraum, südorientiert, 1.OG)

Rel. Luftfeuchte in Abhängigkeit der Raumlufttemperatur als Stundenmittelwerte

Operative Raumtemperatur in Abhängigkeit der Außentemperatur als Stundenmittelwerte



Raumluftkomfort im Referenzraum N 103

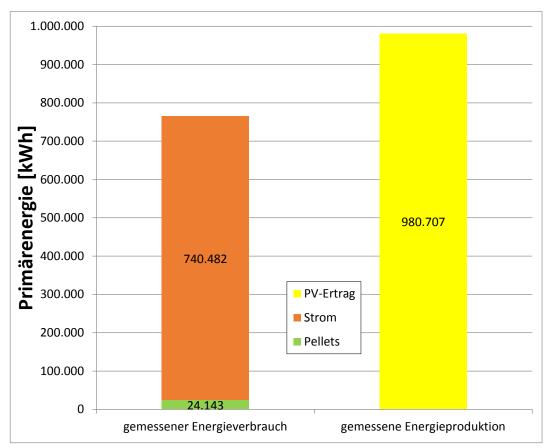
(offener Klassenraum, südorientiert, 1.OG)

CO₂-Konzentration als geordnete Dauerlinie

Fazit Raumluftkomfort

Die Raumluftaspekte rel. Feuchte, operative Raumtemperatur und CO₂-Konzentration sind als gut einzustufen und entsprechen dem positiven Empfinden der Nutzer.

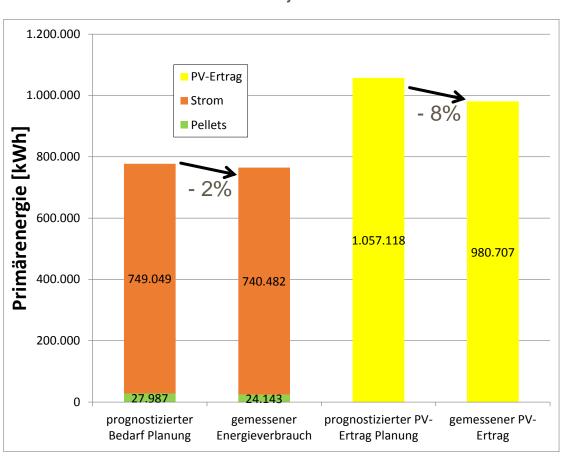
Es gibt lediglich kleine Ausreißer, die im Rahmen der weiteren Betriebsoptimierung verbessert werden (Regelung, Reduzierung von Betriebsstörungen etc.)


Abschätzung der Primärenergiebilanz im ersten Betriebsjahr

Randbedingungen:

- Im Auswertezeitraum liegt kein ungestörter Betrieb vor (Betriebsstörungen, Optimierungen, Raumkomfortschwankungen etc.)
- Die Verbrauchsdaten sind nicht klimabereinigt
- PE-Faktoren laut Planungsmethodik

Fazit


Schon im ersten Betriebsjahr ist der Plusenergiestandard erreicht (unter Berücksichtigung der Randbedingungen). PE-Bilanz im ersten Betriebsjahr (15.3.2016 – 14.03.2017)

Vergleich von Verbrauchs- und Bedarfszahlen

PE-Bilanz im ersten Betriebsjahr

Fazit

Die in der Planung prognostizierten Primärenergiebedarfe (Haustechnik, Nutzung, PV) stimmen gut mit den im ersten Betriebsjahr gemessenen Werten überein (Abweichung 2% bzw. 8%)

Ausblick

Projektplan:

Monitoringzeitraum: Drei Jahre (davon zwei Jahre Betriebsoptimierung und ein Jahr Evaluation)

ein Jahr Optimierung und ein Jahr Evaluation

Themenschwerpunkte der Optimierung:

- Optimierung der Gebäudeleittechnik
- Regelung in der Nichtnutzungszeit (insbesondere in den Ferien)
- Erhöhung der Kälteerzeugung aus freier und adiabater Kühlung
- Sicherstellung der im LV zugesicherten Komponentenqualitäten (z.B. Leistung Pelletkessel)
- Optimierung der Verschattung (Blendschutz)

Vielen Dank für die Aufmerksamkeit!

Dr. Jens M. Kuckelkorn

ZAE Bayern

Bayerisches Zentrum für Angewandte Energieforschung e. V.

Bereich: Energiespeicherung

Walther-Meißner-Str. 6 D-85748 Garching

Tel.: +49 89 329442-17 Fax: +49 89 329442-12

Jens.Kuckelkorn@zae-bayern.de http://www.zae-bayern.de

