Microalgae for sustainable production of fuels and chemicals

Yusuf Chisti

School of Engineering Massey University, Palmerston North New Zealand

Outline

- 1. Why microalgae?
 - Potential products
 - Advantages of using algae
- 2. Microalgae biomass production optionsRaceways and photobioreactors
- 3. Photobioreactor engineering aspects
- 4. Production of algal biodiesel an example product
- 5. Summary and conclusions

Why microalgae?

Energy options from algae

Advantages of microalgae

- 1. Direct conversion of sunlight to a bioproduct
- 2. Renewable and sustainable production
- 3. Rapid growth compared to most plants
- 4. Little or no competition for agricultural land
- 5. No competition with food/feed supplies
- 6. Low requirement for freshwater

Microalgal biomass production

Option 1: Raceway ponds

Typical biomass productivity 0.025 kg m⁻² day⁻¹ (~82 tons ha⁻¹ year⁻¹)

Maximum biomass concentration 1 kg m⁻³ (0.5 kg m⁻³ typical)

β-carotene, Australia

Microalgal biomass production...

Option 2: Tubular photobioreactors

Proved biomass productivity

1.535 kg m⁻³ day⁻¹ (~158 tons ha⁻¹ year⁻¹)

Biomass concentration 4 kg m⁻³

A tubular photobioreactor

Photobioreactor engineering issues to be addressed

Biodiesel – a potential product from algae

United States biodiesel needs = 0.53 billion m³ (to replace all transport fuel)

Not feasible

Crop	Oil yield (L/ha)	Land area needed (M ha)	Percent of existing US cropping area
Corn	172	3,080	1,602
Soybean	446	1,188	652
Canola	1,190	446	244
Jatropha	1,892	280	154
Coconut	2,689	198	108
Oil palm	5,950	90	48
Microalgae 🔪	35,202	15.2	8
Microalgae	70,405	7.6	4
20% w/w oil in biomass			
Massov	40% w/w oil in h	viomass	

Microalgal biodiesel process concept

Summary and conclusions

Products and energy options from microalgae
 Advantages of using microalgae

- 2. Microalgal biomass production

 Raceways and photobioreactors
- 3. <u>Photobioreactor engineering</u> issues
- 4. <u>No terrestrial plant</u> can provide <u>sufficient biodiesel</u> to fully displace fossil transport fuels, but <u>algae can</u>
- 5. A <u>self sustaining process</u> for producing algal oils

